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A B S T R A C T

Cooperation usually becomes harder to sustain as groups become larger because incentives to shirk increase
with the number of potential contributors to collective action. But is this always the case? Here we study a
binary-action cooperative dilemma where a public good is provided as long as not more than a given number
of players shirk from a costly cooperative task. We find that at the stable polymorphic equilibrium, which
exists when the cost of cooperation is low enough, the probability of cooperating increases with group size
and reaches a limit of one when the group size tends to infinity. Nevertheless, increasing the group size may
increase or decrease the probability that the public good is provided at such an equilibrium, depending on
the cost value. We also prove that the expected payoff to individuals at the stable polymorphic equilibrium
(i.e., their fitness) decreases with group size. For low enough costs of cooperation, both the probability of
provision of the public good and the expected payoff converge to positive values in the limit of large group
sizes. However, we also find that the basin of attraction of the stable polymorphic equilibrium is a decreasing
function of group size and shrinks to zero in the limit of very large groups. Overall, we demonstrate non-trivial
comparative statics with respect to group size in an otherwise simple collective action problem.
1. Introduction

Living in groups, together with the possibilities and opportunities
for conflict and cooperation entailed by communal life, is a widespread
phenomenon in the natural world (Krause and Ruxton, 2002). Among
the many factors affecting the evolution of cooperation in social groups,
including relatedness and repeated interactions, group size has received
considerable attention. In particular, how the strength of selection
on cooperative behavior might increase or decrease with group size
has been a recurrent question in behavioral ecology and evolutionary
biology (Beauchamp and Ruxton, 2003; MacNulty et al., 2012; Shen
et al., 2014; Powers and Lehmann, 2017; Peña and Nöldeke, 2018).
This question is paralleled in the social sciences by the question of
how individual incentives to cooperate in a collective action problem
are affected by group size (Olson, 1965; Chamberlin, 1974; Palfrey
and Rosenthal, 1984; Oliver and Marwell, 1988). Although there is
broad consensus that the effect of group size on cooperation is typically
negative, with cooperation becoming more difficult to evolve or sustain
as groups become larger (Olson, 1965; Boyd and Richerson, 1988),
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positive group size effects have been also documented in empirical stud-
ies (Isaac et al., 1994; Powers and Lehmann, 2017) and demonstrated in
theoretical research (Esteban and Ray, 2001; Cheikbossian and Fayat,
2018; Peña and Nöldeke, 2018).

To fix ideas, consider a simple game-theoretic model of social in-
teractions: the ‘‘volunteer’s dilemma’’ (Diekmann, 1985). In this game,
𝑛 players simultaneously become aware of a costly task requiring at
least one volunteer. If at least one of the players volunteers to pay the
cost 𝑐 of performing the task, a good of normalized value of one is
created and enjoyed by all players. If nobody volunteers, the task is
left undone, and no public good is created. A more general version of
this game (which, for simplicity, we will also refer to as a ‘‘volunteer’s
dilemma’’) considers the case where the cooperation of at least 𝜃
volunteers is needed for the collective good to be created, for 1 ≤ 𝜃 ≤
𝑛 (Palfrey and Rosenthal, 1984). This game has become influential in
evolutionary biology, where it has been used to model a wide array of
collective action problems ranging from the secretion of extracellular
compounds in microbes and the construction of collective stalks in
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social amoeba (Archetti, 2009) to leadership in animal societies (Shen
et al., 2010; Smith et al., 2016), confrontational scavenging in ho-
minins (Bickerton and Szathmáry, 2011), and the costly punishment
of free riders in humans (Raihani and Bshary, 2011; Przepiorka and
Diekmann, 2013; Schoenmakers et al., 2014).

The volunteer’s dilemma has provided theoretical underpinnings to
the idea that larger groups are less conducive to cooperation. Indeed,
it is well known that when only one volunteer is required (𝜃 = 1)
both the proportion of volunteers and the probability that the collective
action is successful decrease with group size (Archetti, 2009). More
recently, Nöldeke and Peña (2020) have shown that these two results
extend to 1 < 𝜃 < 𝑛 for the best symmetric Nash equilibrium of
the game (i.e., the equilibrium sustaining the highest probability of
cooperation among the symmetric Nash equilibria) while additionally
proving that the expected payoff at such an equilibrium is also a
decreasing function of group size. Together, these results establish for
the volunteer’s dilemma that there are negative group-size effects on
three different quantities: the proportion of volunteers, the probabil-
ity that the collective action is successful, and the expected payoff
at equilibrium. This casts doubts on the extent to which large-scale
cooperation modeled after the volunteer’s dilemma can be sustained
without the presence of additional cooperation-enhancing mechanisms
and raises the question of whether such negative group-size effects are a
general theoretical feature of a wide class of collective action problems
or a peculiarity of the volunteer’s dilemma.

Here, we consider the group-size effects of a related cooperative
dilemma, which we will call the ‘‘shirker’s dilemma’’. As in the vol-
unteer’s dilemma, 𝑛 players simultaneously become aware of a costly
collective task. Yet, while in the volunteer’s dilemma the collective
task is successful (and a public good is produced) if at least a fixed
number 𝜃 of players volunteer, in the shirker’s dilemma the collec-
tive task is successful if at most a fixed number 𝜁 of players shirk
from volunteering. Obviously, for a given group size 𝑛 and cost of
volunteering 𝑐, the shirker’s dilemma and the volunteer’s dilemma are
equivalent: a shirker’s dilemma with threshold 𝜁 = 𝑛− 𝜃 is nothing but
a volunteer’s dilemma with threshold 𝜃. However, and importantly, the
two games capture different consequences of an increase in group size:
While in the volunteer’s dilemma the number of required volunteers
is a constant independent of group size, in the shirker’s dilemma the
number of required volunteers 𝜃 increases with group size so as to
keep the threshold maximum number of shirkers 𝜁 fixed. Thus, for
large group sizes (and relatively small thresholds), collective action is
successful in the volunteer’s dilemma if some individuals cooperate. By
contrast, in the shirker’s dilemma collective action is successful if few
individuals shirk, and hence if most individuals cooperate. As will be
shown, the different payoff structure of the shirker’s dilemma translates
into different comparative statics with respect to group size and into a
different answer to the question of whether or not larger groups are
less conducive to cooperation.

The shirker’s dilemma is relevant for situations where the (poten-
tially costly) cooperation of all but a few individuals is required to
produce a collective good. Such scenarios may arise in cases tradi-
tionally conceptualized as volunteer’s dilemmas. For instance, Archetti
(2009) lists as an example of a volunteer’s dilemma the case of the
amoeba Dictyostelium discoideum that, when facing starvation, differ-
entiates into a ball of reproductive spores (shirkers) and a sterile
stalk (volunteers). However, it can be argued that what is needed for
collective action to be successful in this case is not that enough cells
become part of the stalk, but that there is a cap on the number of
reproductive cells that must be maintained at the top. Likewise, Raihani
and Bshary (2011) argue that the punishment of free riders in an 𝑛-
player social dilemma is best described by assuming that the benefit of
punishment is a step function of the amount of punishment (e.g., the
number of punishers in a group). However, for many social situations,
it might be more plausible that the inflection point of such a step
11

function (and hence the success of punishment as a collective action) o
is determined more by the maximum number of allowed second-order
free riders (i.e., individuals that will refrain from punishing free riders)
than by the minimum number of punishers. A maximal allowable
number of shirkers instead of a minimal required number of volunteers
– and hence the payoff structure of the shirker’s dilemma in contrast
to that of a volunteer’s dilemma – may also be relevant in other
human interactions. For example, a hacker may scan the computer
systems of target organizations for vulnerable entry points left open by
employees who compromised computer security instructions. By itself,
a particular entry point does not yet guarantee successful hacking of
the organization’s website or data for ransom purposes. Therefore, the
hacker may decide to attack all vulnerable access points simultaneously
only if their number exceeds a certain threshold and otherwise continue
its search for a more vulnerable organization. In all of these situations,
the shirker’s dilemma might better represent the social dilemma at hand
than the volunteer’s dilemma.

Our analysis of the group-size effects for the shirker’s dilemma
builds upon previous insights derived in Peña and Nöldeke (2018)
for the general case of binary-action symmetric 𝑛-player games and
in Nöldeke and Peña (2020) for the particular case of the volunteer’s
dilemma. The question asked in Nöldeke and Peña (2020) was: what
are the consequences of larger group sizes in a collective action that is
successful if and only if there are enough contributors? Here, we ask
the dual question, namely: What are the consequences of larger group
sizes in a collective action that is successful if and only if there are not
too many shirkers? In particular, we are interested in the three group-
size effects analyzed by Nöldeke and Peña (2020) for the volunteer’s
dilemma, namely: (i) the effect of group size on the probability that
individuals cooperate at equilibrium, (ii) the effect of group size on the
expected payoff of individuals, and (iii) the effect of group size on the
probability that collective action is successful at equilibrium. Finally,
we also investigate what happens to these quantities as the groups are
made arbitrarily large, that is, in the limit of infinitely large groups.

2. Model

2.1. The shirker’s dilemma

Our model is a particular case of a multi-player matrix game (Broom
et al., 1997) with two pure strategies (for related models see, e.g., Bach
et al. 2006, Archetti 2009, Peña et al. 2014, Broom et al. 2019, Peña
and Nöldeke 2023). Specifically, 𝑛 > 2 players face a task to be
performed that requires collective action for its success. Each player
𝑖 ∈ {1,… , 𝑛} can either ‘‘volunteer’’ (or ‘‘cooperate’’) at a cost 𝑐 ∈ (0, 1)
or, alternatively, ‘‘shirk’’ from the task (or ‘‘defect’’). All players, irre-
spective of their strategy, enjoy an additional payoff benefit normalized
to one (i.e., a public good of value one is provided) if at most 𝜁 ≥ 1
players shirk. Throughout the following, we take 𝜁 and 𝑐 as given and
study the impact of group size 𝑛 on equilibrium behavior. In doing so,
we restrict attention to group sizes 𝑛 > 𝜁 + 1, thereby excluding the
trivial case in which the benefit arises even if all players shirk (𝑛 = 𝜁)
nd the well-understood case (Diekmann, 1985) in which exactly one
olunteer is required for the benefit to arise (𝑛 = 𝜁 + 1).

As noted in the Introduction, for given 𝑛 our game corresponds
o a volunteer’s dilemma with 𝜃 = 𝑛 − 𝜁 as the minimal number of
olunteers. Nevertheless, we prefer the name ‘‘shirker’s dilemma’’ as it
raws attention to the essential feature of our analysis, namely that we
tudy the case in which the maximal number of shirkers (rather than
he minimal number of volunteers) compatible with the provision of
he benefit is considered fixed.

.2. Replicator dynamic and pivot probability

We assume that the population is infinitely large and comprised

f at most two types of individuals: ‘‘shirkers’’ (or ‘‘defectors’’) and
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‘‘volunteers’’ (or ‘‘cooperators’’). Denoting by 𝑞 the proportion of shirk-
ers in the population, and assuming that groups of size 𝑛 are matched
to play the game uniformly at random, the probability that there are
exactly 𝑘 shirkers in a group is given by
(

𝑛
𝑘

)

𝑞𝑘 (1 − 𝑞)𝑛−𝑘 . (1)

Letting

𝛱𝜁,𝑛(𝑞) ≡
𝜁
∑

𝑘=0

(

𝑛
𝑘

)

𝑞𝑘(1 − 𝑞)𝑛−𝑘 (2)

enote the probability that there are at most 𝜁 shirkers in a group, the
xpected payoff to a shirker and to a volunteer can then be written as

S(𝑞) = 𝛱𝜁−1,𝑛−1(𝑞), (3)

nd

V(𝑞) = 𝛱𝜁,𝑛−1(𝑞) − 𝑐. (4)

ndeed, a shirker gets a payoff of one if there are not more than
− 1 shirkers among its 𝑛 − 1 co-players, and zero otherwise, which

xplains Eq. (3). In contrast, a volunteer gets a benefit of one in case
here are not more than 𝜁 shirkers among its co-players but always
ays the cost 𝑐 of volunteering, which explains Eq. (4). Note that (1)
nd (2) correspond, respectively, to the probability mass function and
he cumulative distribution function of a binomial distribution with
arameters 𝑛 and 𝑞.

We assume that the change in the proportion of shirkers over
volutionary time is given by the continuous-time two-strategy repli-
ator dynamic (Taylor and Jonker, 1978; Weibull, 1995; Hofbauer and
igmund, 1998)

̇ = 𝑞 (1 − 𝑞) 𝑔𝑛,𝜁 ,𝑐 (𝑞), (5)

here 𝑔𝑛,𝜁 ,𝑐 (𝑞) corresponds to the ‘‘gain function’’ (Bach et al., 2006;
eña et al., 2014), the ‘‘incentive function’’ (Broom and Rychtář, 2022,
. 177–178), or the ‘‘private gain function’’ (Peña and Nöldeke, 2023).
he gain function is the difference in expected payoffs between the two
ure strategies in a population where the proportion of shirkers is 𝑞
nd quantifies the selection pressure on the proportion of shirkers in
he population. In our case, the gain function is given by

𝑛,𝜁 ,𝑐 (𝑞) ≡ 𝑤S (𝑞) −𝑤V (𝑞) = 𝑐 − 𝜋𝜁,𝑛 (𝑞) , (6)

where

𝜋𝜁,𝑛 (𝑞) =
(

𝑛 − 1
𝜁

)

𝑞𝜁 (1 − 𝑞)𝑛−1−𝜁 , (7)

s the probability that 𝜁 out of 𝑛 − 1 group members shirk when the
roportion of shirkers in the population is equal to 𝑞. As a given focal
layer’s strategy is decisive for whether or not the collective action
f the group is successful exactly when 𝜁 other group members shirk,
q. (7) is thus the probability that a change in the focal player’s strategy
hanges the outcome of the social interaction. This is analogous to
hat is known as the pivot probability in the game-theoretic analysis of
oting models (Palfrey and Rosenthal, 1983; Nöldeke and Peña, 2016),
.e., the probability that the decision of a single voter will change the
utcome of an election.

.3. Rest points and their stability

We are interested in the asymptotically stable rest points of the
eplicator dynamic (5) as these indicate the effects of selection in the
ong run for our model. The rest points of the replicator dynamic
orrespond to the zeros of Eq. (5). There are two kinds of rest points.
irst, there are two trivial rest points 𝑞 = 0 (‘‘all volunteer’’) and 𝑞 = 1
‘‘all shirk’’) at which the population is monomorphic and the type
ariance of the population, given by 𝑞(1 − 𝑞), is equal to zero. Second,
12

here can be interior rest points 𝑞 ∈ (0, 1), at which the population is
polymorphic but the expected payoffs to the two strategies are equal
(i.e., 𝛱S (𝑞) − 𝛱V (𝑞) = 0 holds), so that the gain function vanishes.
Setting Eq. (6) to zero, we find that the interior rest points correspond
to the solutions of the pivotality condition

𝜋𝜁,𝑛 (𝑞) = 𝑐. (8)

The stability of both trivial and interior rest points can be verified by
checking the sign pattern of the gain function (Bukowski and Miekisz,
2004; Peña et al., 2014; Peña and Nöldeke, 2023). In particular, 𝑞 = 0
is stable if the initial sign of the gain function is negative, 𝑞 = 1 is
stable if the final sign of the gain function is positive, and an interior
rest point is stable (resp. unstable) if the gain function changes sign
from positive to negative (resp. negative to positive) at the rest point.
In turn, the sign pattern of the gain function (6) depends on how the
pivot probability compares to the cost of volunteering as a function of
the proportion of shirkers in the population. To make progress, we thus
need a full characterization of the shape of the pivot probability as a
function of the proportion of shirkers.

To this end, it can be verified that the pivot probability 𝜋𝜁,𝑛 (𝑞)
satisfies the following properties (see Nöldeke and Peña, 2020; the top
left panel of Fig. 1 illustrates). First, the pivot probability is differ-
entiable in 𝑞 (differentiability). Second, 𝜋𝜁,𝑛 (0) = 𝜋𝜁,𝑛 (1) = 0 holds
(end-points property). Third, the pivot probability is strictly increasing
on the interval

[

0, 𝜁∕(𝑛 − 1)
]

and strictly decreasing on the interval
𝜁∕(𝑛 − 1), 1

]

with non-zero derivative on the interiors of these intervals
unimodality). In particular, 𝜁∕(𝑛−1) is the unique maximizer of 𝜋𝜁,𝑛 (𝑞)

in the interval [0, 1]. Hence,

̄𝜁,𝑛 ≡ 𝜋𝜁,𝑛 (𝜁∕(𝑛 − 1)) ∈ (0, 1) (9)

is the critical cost value such that (i) for 𝑐 > 𝑐𝜁,𝑛 the pivotality
condition (8) has no solution, (ii) for 𝑐 = 𝑐𝜁,𝑛 it has a unique solution,
and (iii) for 𝑐 < 𝑐𝜁,𝑛 it has two solutions.

The shape properties of the pivot probability allow us to fully char-
acterize the evolutionary dynamics of the shirker’s dilemma. Indeed,
it follows from the end-points property and the assumption 𝑐 > 0
that 𝑞 = 0 (‘‘all volunteer’’) is always an unstable rest point of the
replicator dynamic (5), while 𝑞 = 1 (‘‘all shirk’’) is always a stable
rest point. Additionally, these are the only rest points when the cost of
volunteering is sufficiently large (i.e., when 𝑐 > 𝑐𝜁,𝑛 holds). When the
cost is sufficiently low (i.e., when 𝑐 < 𝑐𝜁,𝑛 holds) the replicator dynamic
has two additional rest points in the interval (0, 1), corresponding to the
two solutions to the pivotality condition (8). The derivative of the gain
function is negative at the smaller, while it is positive at the larger of
these rest points. Hence, the gain function changes sign from positive
to negative at the smaller of these rest points (which is then stable),
while it changes sign from negative to positive at the larger of these
rest points (which is then unstable). We collect these observations on
the characterization of the replicator dynamic of the shirker’s dilemma
in the following Lemma (cf. Lemma 1 in Nöldeke and Peña, 2020; the
top right and bottom panels of Fig. 1 illustrate).

Lemma 1. For any 𝜁 , 𝑛, and 𝑐, 𝑞 = 0 is an unstable rest point and 𝑞 = 1
is a stable rest point of the replicator dynamic. Additionally, the number,
location, and stability of interior rest points of the replicator dynamic depend
on how the cost of volunteering 𝑐 compares to the critical cost (9) as follows:

1. If 𝑐 > 𝑐𝜁,𝑛, there are no interior rest points.
2. If 𝑐 = 𝑐𝜁,𝑛, there is a unique unstable interior rest point, namely

𝑞 = 𝜁∕(𝑛 − 1).
3. If 𝑐 < 𝑐𝜁,𝑛, there are two interior rest points: 𝑞𝑠𝜁,𝑐 (𝑛), which is stable,
and 𝑞𝑢𝜁,𝑐 (𝑛), which is unstable. The two interior rest points satisfy
0 < 𝑞𝑠𝜁,𝑐 (𝑛) < 𝑞𝑢𝜁,𝑐 (𝑛) < 1, with 𝑞𝑠𝜁,𝑐 (𝑛) being the unique solution to
(8) in the interval (0, 𝜁∕(𝑛 − 1)), and 𝑞𝑢𝜁,𝑐 (𝑛) being the unique solution
to (8) in the interval 𝜁∕(𝑛 − 1), 1 .
( )
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Fig. 1. Pivot probability 𝜋𝜁,𝑛 (𝑞) as a function of the proportion of shirkers 𝑞, and corresponding evolutionary dynamics, as given by Lemma 1, for 𝜁 = 2 and 𝑛 = 4. Top left: The
pivot probability is unimodal, with maximum 𝑐𝜁,𝑛 at 𝑞 = 𝜁∕(𝑛− 1). Here, 𝑐2,4 ≈ 0.444, and 𝜁∕(𝑛− 1) = 2∕3. Top right: For high costs (𝑐 > 𝑐𝜁,𝑛; here 𝑐 = 0.6) the replicator dynamic has
o interior rest points. The trivial rest point 𝑞 = 0 is unstable (open circle) while the trivial rest point 𝑞 = 1 is stable (full circle). The evolutionary dynamics lead to 𝑞 = 1 for all
nitial conditions (arrow). Bottom left: For a cost equal to the critical cost 𝑐𝜁,𝑛, there is a unique interior rest point at 𝑞 = 𝜁∕(𝑛 − 1) that is unstable (open circle). The evolutionary
ynamics lead to 𝑞 = 1 for all initial conditions (arrows). Bottom right: For low costs (𝑐 < 𝑐𝜁,𝑛; here, 𝑐 = 0.3), the replicator dynamic features two interior rest points: the smaller
𝑞𝑠𝜁,𝑐 ) is stable (full circle), and the larger (𝑞𝑢𝜁,𝑐 ) is unstable (open circle). The dynamics (arrows) lead either to 𝑞𝑠𝜁,𝑐 or to 𝑞 = 1, depending on initial conditions.
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There are two cases of interest. First, for high costs (i.e., 𝑐 ≥ 𝑐𝜁,𝑛)
he replicator dynamic is such that the only stable rest point is 𝑞 = 1,
.e., the population is characterized by full shirking at equilibrium.
econd, for low costs (i.e., 𝑐 < 𝑐𝜁,𝑛), the replicator dynamic exhibit what
an be called bistable coexistence (Peña et al., 2015), where an interior
nstable rest point (located at 𝑞𝑢𝜁,𝑐 (𝑛)) separates the basins of attraction
f two stable rest points: one where there is full shirking (𝑞 = 1) and
nother one where shirkers and volunteers coexist (i.e., 𝑞𝑠𝜁,𝑐 (𝑛)).

.4. Proportion of volunteers, success probability, and expected payoff

We are interested in the effects of group size on three quantities: (i)
he proportion of volunteers, (ii) the probability of collective success,
nd (iii) the expected payoff, all evaluated at the stable rest point of the
eplicator dynamic sustaining the smallest amount of shirking (i.e., the
argest amount of volunteering). In the following, we refer to such rest
oint as the minimal rest point and denote it by 𝑞𝜁,𝑐 (𝑛).

Depending on the particular values of 𝜁 , 𝑛, and 𝑐, the minimal rest
oint can be either the trivial rest point 𝑞 = 1 or the interior rest point
𝑠
𝜁,𝑐 (𝑛). More precisely, from Lemma 1 we have

𝜁,𝑐 (𝑛) = [[𝑐 ≥ 𝑐𝜁,𝑛]] + [[𝑐 < 𝑐𝜁,𝑛]]𝑞𝑠𝜁,𝑐 (𝑛), (10)

here we have used the Iverson bracket to write [[𝑃 ]] = 1 if 𝑃 is true
nd [[𝑃 ]] = 0 if 𝑃 is false. With this definition of 𝑞𝜁,𝑐 (𝑛) we let

𝑝𝜁,𝑐 (𝑛) = 1 − 𝑞𝜁,𝑐 (𝑛), (11)

(𝑛) = 𝛱 (𝑞 (𝑛)), (12)
13

𝜁,𝑐 𝜁 ,𝑛 𝜁,𝑐 a
𝑢𝜁,𝑐 (𝑛) = 𝛱𝜁−1,𝑛−1(𝑞𝜁,𝑐 (𝑛)), (13)

enote, respectively, the proportion of volunteers, the success probability,
nd the expected payoff at the minimal rest point. The proportion
f volunteers is simply one minus the proportion of shirkers at the
inimal rest point. It is thus given by Eq. (11). The success probability

s the probability that the collective good is produced. This happens
hen there are no more than 𝜁 shirkers in a group of 𝑛 players when the
roportion of shirkers in the population is given by (10). The success
robability is thus given by Eq. (12). Finally, the expected payoff at
he minimal rest point is most easily calculated from the perspective
f a shirker (see Eq. (3)), and thus given by Eq. (13). Clearly, the
quilibrium payoff can be also calculated from an ex-ante perspective,
nd is thus given by the success probability minus the expected cost of
olunteering. This observation provides a useful equation linking the
hree quantities, namely

𝜁,𝑐 (𝑛) = 𝜙𝜁,𝑐 (𝑛) − 𝑝𝜁,𝑐 (𝑛) ⋅ 𝑐. (14)

. Results

.1. Preliminaries: The effect of group size on the critical cost

Before proceeding to our main results, we first need to characterize
ow the critical cost 𝑐𝜁,𝑛 from Eq. (9) depends on group size. This is
mportant because the critical cost determines whether the minimal rest
oint 𝑞𝜁,𝑐 (𝑛) from Eq. (10) features full shirking or a positive proportion
f volunteers. The following result provides such a characterization and
n additional result concerning the relation between the threshold 𝜁
nd the critical cost. The proof is in Appendix A.1. Fig. 2 illustrates.
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Fig. 2. Critical cost 𝑐𝜁,𝑛, maximum critical cost 𝑐†𝜁 , and limit critical cost 𝑐∗𝜁 . Left: Critical cost 𝑐𝜁,𝑛 (circles) as a function of group size 𝑛 for 𝜁 ∈ {1, 2, 3, 4}. As stated in Lemma 2,
the sequence of critical costs is strictly decreasing for all 𝜁 with a limit given by 𝑐∗𝜁 (dashed lines). Right: Maximum critical cost 𝑐†𝜁 (circles) and limit critical cost 𝑐∗𝜁 (squares) as a
function of threshold 𝜁 .
Lemma 2. For any 𝜁 , the critical cost 𝑐𝜁,𝑛 is strictly decreasing in 𝑛 with
maximum

̄†𝜁 ≡ max
𝑛>𝜁+1

𝑐𝜁,𝑛 = 𝑐𝜁,𝜁+2 =
(

𝜁
𝜁 + 1

)𝜁
, (15)

and limit

̄∗𝜁 ≡ lim
𝑛→∞

𝑐𝜁,𝑛 = 𝜌𝜁 (𝜁 ) > 0, (16)

here

𝑘(𝜆) =
𝜆𝑘𝑒−𝜆

𝑘!
, 𝑘 = 0, 1,… (17)

enotes the probability mass function of a Poisson distribution with param-
ter 𝜆.
Moreover, both 𝑐†𝜁 and 𝑐∗𝜁 are decreasing in 𝜁 , with limits lim𝜁→∞ 𝑐†𝜁 =

̄∗1 = 1∕𝑒, and lim𝜁→∞ 𝑐∗𝜁 = 0.

Lemma 2 indicates a negative effect of group size on the evolution
of cooperation for the shirker’s dilemma. Namely, increasing the group
size decreases the critical cost value 𝑐𝜁,𝑛, and hence increases the
range of cost levels for which full shirking is the unique stable rest
point. In particular, for cost values satisfying 𝑐𝜁,𝑛+1 < 𝑐 < 𝑐𝜁,𝑛, some
cooperation can be sustained at equilibrium for the smaller group size
𝑛 (i.e., 𝑝𝜁,𝑐 (𝑛) > 0) but not for the larger group size 𝑛+1 (i.e., 𝑝𝜁,𝑐 (𝑛+1) =
0). An analogous negative group-size effect is present in the volunteer’s
dilemma (Nöldeke and Peña, 2020, Lemma 1).

An immediate consequence of Lemma 2 is that, for a given threshold
𝜁 ≥ 1, the cost 𝑐 ∈ (0, 1) can fall into one of three different regions (see
right panel of Fig. 2).

1. For 𝑐 ∈ [𝑐†𝜁 , 1), costs are so high that 𝑐 ≥ 𝑐𝜁,𝑛 holds for all
group sizes 𝑛. In this case, the minimal rest point is given by
𝑞𝜁,𝑐 (𝑛) = 1 for all 𝑛. Further, the proportion of volunteers, the
success probability, and the expected payoff all reduce to

𝑝𝜁,𝑐 (𝑛) = 𝜙𝜁,𝑐 (𝑛) = 𝑢𝜁,𝑐 (𝑛) = 0, for all 𝑛. (18)

2. For 𝑐 ∈ (𝑐∗𝜁 , 𝑐
†
𝜁 ), there exists a finite critical group size 𝑛̄𝜁,𝑐 , such

that 𝑐 < 𝑐𝜁,𝑛 holds if and only if 𝑛 ≤ 𝑛̄𝜁,𝑐 holds, while 𝑐 ≥ 𝑐𝜁,𝑛
holds if and only if 𝑛 > 𝑛̄𝜁,𝑐 holds. In this case, the minimal
rest point corresponds to the non-trivial rest point 𝑞𝑠𝜁,𝑐 (𝑛) for
14

𝑛 ≤ 𝑛̄𝜁,𝑐 , and to the trivial rest point 𝑞 = 1 for 𝑛 > 𝑛̄𝜁,𝑐 . It
follows that the proportion of volunteers, the success probability,
and the expected payoff are all positive for group sizes smaller
than or equal to the critical group size, but they all drop to zero
thereafter, namely

𝑛 ≤ 𝑛̄𝜁,𝑐 ⇒ 𝑝𝜁,𝑐 (𝑛) > 0, 𝜙𝜁,𝑐 (𝑛) > 0, 𝑢𝜁,𝑐 (𝑛) > 0,

𝑛 > 𝑛̄𝜁,𝑐 ⇒ 𝑝𝜁,𝑐 (𝑛) = 0, 𝜙𝜁,𝑐 (𝑛) = 0, 𝑢𝜁,𝑐 (𝑛) = 0. (19)

3. For 𝑐 ∈ (0, 𝑐∗𝜁 ], costs are sufficiently low that 𝑐 < 𝑐𝜁,𝑛 holds for
all group sizes 𝑛. In this case, the minimal rest point corresponds
to the non-trivial rest point 𝑞𝑠𝜁,𝑐 (𝑛), and the proportion of vol-
unteers, the success probability, and the expected payoff are all
positive for all group sizes 𝑛. That is, we have

𝑝𝜁,𝑐 (𝑛) > 0, 𝜙𝜁,𝑐 (𝑛) > 0, 𝑢𝜁,𝑐 (𝑛) > 0, for all 𝑛.

In the following, we restrict our analysis to costs satisfying 𝑐 ∈
(0, 𝑐†𝜁 ) (i.e., cases 2 and 3 above), thus excluding the uninteresting case
in which the proportion of volunteers, the expected payoff, and the
success probability are all zero for all group sizes (i.e., case 1 above).

3.2. The effect of group size on the proportion of volunteers

Our first main result on group-size effects pertains to the compar-
ative statics of the proportion of volunteers (11) at the minimal rest
point (10). To derive this result, we begin by stating:

Lemma 3. For any 𝜁 , 𝑛, and cost 𝑐 < 𝑐𝜁,𝑛+1, the interior rest points of the
replicator dynamic for group size 𝑛 and group size 𝑛 + 1 satisfy

𝑞𝑠𝜁,𝑐 (𝑛 + 1) < 𝑞𝑠𝜁,𝑐 (𝑛) < 𝜁∕𝑛 < 𝑞𝑢𝜁,𝑐 (𝑛 + 1) < 𝑞𝑢𝜁,𝑐 (𝑛). (20)

The formal proof of Lemma 3 is in Appendix A.2. Fig. 3 illustrates
the underlying arguments for the inequalities 𝑞𝑠𝜁,𝑐 (𝑛 + 1) < 𝑞𝑠𝜁,𝑐 (𝑛)
and 𝑞𝑢𝜁,𝑐 (𝑛 + 1) < 𝑞𝑢𝜁,𝑐 (𝑛). At the stable interior rest point 𝑞𝑠𝜁,𝑐 (𝑛), the
probability that a focal group member is pivotal is increasing both in
group size and in the proportion of shirkers. The reason that an increase
in group size decreases the proportion of shirkers in the stable interior
rest point is thus that the positive effect of an increase in group size
on the pivot probability has to be compensated by a decrease in the
proportion of shirkers to restore the pivotality condition. In contrast, at

𝑢
the unstable interior rest point 𝑞𝜁,𝑐 (𝑛), the probability that a focal group
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Fig. 3. Illustration of Lemma 3 and its proof (in Appendix A.2) for 𝜁 = 2, 𝑛 = 4, and 𝑐 = 0.2. For costs 𝑐 lower than 𝑐𝜁,𝑛+1, both a stable rest point (full circle) and an unstable rest
oint (open circle) exist for group sizes 𝑛 and 𝑛 + 1, and are ordered in such a way that Eq. (20) is satisfied, with both rest points decreasing with group size.
Fig. 4. Proportion of volunteers 𝑝𝜁,𝑐 (𝑛) (left), and expected payoff 𝑢𝜁,𝑐 (𝑛) (right) as functions of group size for 𝜁 ∈ {1, 2, 3, 4, 5}, 𝑐 = 0.2, and 𝑛 ∈ {𝜁 + 2,… , 30}. For 𝜁 ≤ 3 the
nequality 𝑐 < 𝑐∗𝜁 holds, so that the proportion of volunteers is strictly increasing (Proposition 1) and the expected payoff is strictly decreasing (Proposition 2) in group size. Even
hough 𝑐 > 𝑐∗4 ≈ 0.1954 holds, for 𝜁 = 4 the same monotonicity properties hold over the range of group sizes illustrated here because the critical group size is 𝑛̄4,0.2 = 88 > 30. For
= 5 both the proportion of volunteers and the expected payoff drop to zero at the critical group size 𝑛̄5,0.2 = 22.
P
𝑝
p

ember is pivotal is decreasing both in group size and in the proportion
f shirkers. The reason that an increase in group size decreases the
roportion of shirkers in the unstable interior rest point is thus that
he negative effect of an increase in group size on the pivot probability
as to be compensated by a decrease in the proportion of shirkers to
estore the pivotality condition.

Rewriting the first inequality in (20) in terms of the proportion of
olunteers, we obtain that

𝜁,𝑐 (𝑛 + 1) > 𝑝𝜁,𝑐 (𝑛). (21)

olds for any cost of volunteering 𝑐 < 𝑐𝜁,𝑛+1. Combining this observa-
ion with Lemmas 1 and 2 directly implies the following characteri-
ation of the group-size effect on the proportion of volunteers at the
15

inimal rest point. Fig. 4 (left panel) and Fig. 5 illustrate.
roposition 1. For any 𝜁 and 𝑐 ∈ (0, 𝑐†𝜁 ), the proportion of volunteers
𝜁,𝑐 (𝑛) is either strictly increasing or unimodal in group size 𝑛. More
recisely:

1. If 𝑐 ≤ 𝑐∗𝜁 , then 𝑝𝜁,𝑐 (𝑛) is strictly increasing in 𝑛.
2. If 𝑐∗𝜁 < 𝑐 < 𝑐†𝜁 , then 𝑝𝜁,𝑐 (𝑛) is strictly increasing in 𝑛 for 𝑛 ≤ 𝑛̄𝜁,𝑐 and
equal to zero for 𝑛 > 𝑛̄𝜁,𝑐 .

This result demonstrates a positive group-size effect on the evolu-
tion of cooperation for the shirker’s dilemma. For sufficiently low costs
(i.e., 𝑐 ∈ (0, 𝑐∗𝜁 )) the proportion of volunteers at the minimal rest point
is strictly increasing in group size, so that the larger the group size the
larger the proportion of volunteers in the population at equilibrium.

∗ †
For intermediate costs (i.e., 𝑐 ∈ [𝑐𝜁 , 𝑐𝜁 )) the proportion of volunteers at
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Fig. 5. Proportion of volunteers 𝑝𝜁,𝑐 (𝑛) for 𝜁 ∈ {1, 2, 3, 4}, 𝑐 ∈ {0.01, 0.02,… , 0.5}, and 𝑛 ∈ {𝜁 + 2,… , 30}. The maximum and limit critical costs, 𝑐†𝜁 and 𝑐∗𝜁 , are shown respectively
as red solid and red dashed lines. As proven in Proposition 1, for costs between these two critical costs, the proportion of volunteers is first strictly increasing in group size and
then drops to zero. For costs below 𝑐∗𝜁 (red dashed line), the proportion of volunteers is strictly increasing in group size.
the minimal rest point is strictly increasing with group size up to the
critical group size (for group sizes 𝑛 ∈

{

𝜁 + 2,… , 𝑛̄𝜁,𝑐
}

) before falling
to zero thereafter (for group sizes 𝑛 > 𝑛̄𝜁,𝑐). It follows that, from the
perspective of maximizing the proportion of volunteers at the minimal
equilibrium, the optimal group size is either intermediate and equal to
the critical group size (for intermediate costs) or infinite (for low costs).

This said, note that Lemma 3 also demonstrates a negative group-
size effect when looking into the comparative statics of the basin of
attraction of the interior rest point 𝑞𝑠𝜁,𝑐 (𝑛) sustaining non-zero volun-
teering at equilibrium. Since the size of this basin of attraction is
determined by the proportion of shirkers at the unstable rest point
𝑞𝑢𝜁,𝑐 (𝑛) and this proportion decreases with group size, it follows that the
basin of attraction of 𝑞𝑠𝜁,𝑐 (𝑛) decreases (and the basin of attraction of
full shirking increases) with group size (see Fig. 6 for an illustration).
Overall, the proportion of volunteers at the stable interior rest point
can increase with group size, but such an increase is accompanied by
a decrease in its basin of attraction.

3.3. The effect of group size on the expected payoff

Next, we address the effect of group size on the expected payoff.
The following result shows that the group-size effect on the expected
payoff at the minimal rest point is negative (see Appendix A.3 for a
proof; see Fig. 4 (right panel) and Fig. 7 for illustrations).

Proposition 2. For any 𝜁 and 𝑐 ∈ (0, 𝑐†𝜁 ), the expected payoff 𝑢𝜁,𝑐 (𝑛) is
decreasing in group size 𝑛. More precisely:

1. If 𝑐 ≤ 𝑐∗𝜁 , then 𝑢𝜁,𝑐 (𝑛) is strictly decreasing in 𝑛.
2. If 𝑐∗𝜁 < 𝑐 < 𝑐†𝜁 , then 𝑢𝜁,𝑐 (𝑛) is strictly decreasing in 𝑛 for 𝑛 ≤ 𝑛̄𝜁,𝑐 and
equal to zero for 𝑛 > 𝑛̄𝜁,𝑐 .

This result contrasts with the positive group-size effect given in
Proposition 1 when considering the proportion of volunteers. Together,
16
Propositions 1 and 2 indicate that although there can be less shirking at
equilibrium as the group size increases, the increased cooperation rate
is not enough to increase (via a concomitant increase in the success
probability, see Eq. (14)) the expected payoff, and hence the fitness, of
individuals in the population.

3.4. The effect of group size on the success probability

Consider an increase in group size from 𝑛 to 𝑛+1. If a stable interior
rest point exists for both of these group sizes, which from Lemma 2 will
be the case if and only if 𝑐 < 𝑐𝜁,𝑛+1, Propositions 1 and 2 give definite
answers to the question of how such an increase in group size affects
the proportion of volunteers and expected payoff at the stable interior
rest point: the proportion of volunteers increases, whereas the expected
payoff decreases. In contrast, the effect of such an increase in group
size on the success probability at a stable interior rest point cannot be
unambiguously signed.

To see why this is the case, it is instructive to use Eq. (14) to rewrite
the success probability 𝜙𝜁,𝑐 (𝑛) as

𝜙𝜁,𝑐 (𝑛) = 𝑢𝜁,𝑐 (𝑛) + 𝑝𝜁,𝑐 (𝑛) ⋅ 𝑐. (22)

It is then apparent that the group size effect on the success probability
is the sum of two effects pointing in opposite directions: an increase in
group size from 𝑛 to 𝑛 + 1 reduces the expected payoff 𝑢𝜁,𝑐 (𝑛), but at
the same time increases the proportion of volunteers 𝑝𝜁,𝑐 (𝑛). Whether
the sum of these two effects results in an increase or a decrease in the
success probability depends on their relative strength. In principle, it
could be possible that one of the two effects is always stronger than the
other, thereby allowing us to sign the group size effect on the success
probability. However, the following proposition shows that this is not
so by demonstrating that whether an increase in group size results in
an increase or a decrease of the success probability depends on the cost
parameter (the proof is in Appendix A.4).
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Fig. 6. Location of the unstable rest point 𝑞𝑢𝜁,𝑐 (𝑛), or equivalently, the size of the basin of attraction of the stable rest point 𝑞𝑠𝜁,𝑐 (𝑛) for 𝜁 ∈ {1, 2, 3, 4}, 𝑐 ∈ {0.01, 0.02,… , 0.5}, and
𝑛 ∈ {𝜁 + 2,… , 30}. The red solid line represents the contour line at which 𝑞𝑢𝜁,𝑐 (𝑛) = 1∕2 holds. To the left of this line, 𝑞𝑠𝜁,𝑐 (𝑛) has the largest basin of attraction. To the right of this
line, full shirking has the largest basin of attraction. As indicated in the main text, 𝑞𝑢𝜁,𝑐 (𝑛) decreases with group size 𝑛 for fixed threshold of shirkers 𝜁 and cost of volunteering 𝑐.

Fig. 7. Expected payoff 𝑢𝜁,𝑐 (𝑛) for 𝜁 ∈ {1, 2, 3, 4}, 𝑐 ∈ {0.01, 0.02,… , 0.5}, and 𝑛 ∈ {𝜁 + 2,… , 30}. The maximum and limit critical costs, 𝑐†𝜁 and 𝑐∗𝜁 , are shown respectively as red solid
and red dashed lines. As proven in Proposition 2, for costs between these two critical costs, the expected payoff is strictly decreasing and drops to zero for finite but sufficiently
large group sizes. For costs below 𝑐∗𝜁 (red dashed line), the expected payoff is strictly decreasing in group size.
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Fig. 8. Success probability as a function of group size. Left: success probability 𝜙𝜁,𝑐 for 𝜁 = 1, three different values of cost 𝑐, and 𝑛 ∈ {3,… , 10}. For this range of group sizes, 𝜙1,𝑐
is strictly increasing for 𝑐 = 0.305, unimodal (with a local maximum at 𝑛 = 6) for 𝑐 = 0.3075, and strictly decreasing for 𝑐 = 0.31. Right : success probability 𝜙𝜁,𝑐 (𝑛) for 𝜁 ∈ {1, 2, 3, 4, 5},
= 0.2, and 𝑛 ∈ {𝜁 + 2,… , 30}. For 𝜁 = 5, the success probability falls to zero at the critical group size 𝑛̄5,0.2 = 22.
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roposition 3. Suppose 𝑐 < 𝑐𝜁,𝑛+1 holds. Then the success probabilities
or group size 𝑛 and 𝑛 + 1 satisfy:

1. 𝜙𝜁,𝑐 (𝑛 + 1) < 𝜙𝜁,𝑐 (𝑛) for cost 𝑐 sufficiently close to 𝑐𝜁,𝑛+1.
2. 𝜙𝜁,𝑐 (𝑛 + 1) > 𝜙𝜁,𝑐 (𝑛) for cost 𝑐 sufficiently close to zero.

Proposition 3 indicates a negative (resp. positive) group size effect
n the success probability for relative large (resp. small) costs. We
an offer some intuition for the first of these results: When costs are
lose to but below 𝑐𝜁,𝑛+1, then (as can be seen from Fig. 3) the positive
roup-size effect on the proportion of volunteers at the stable interior
est point must be very small, implying that the change in the second
erm on the right side of Eq. (22) is very small, too. At the same time,
hen the increase in the proportion of volunteers is very small, then
n increase in group size will have a significant negative effect on the
xpected payoff. Hence, the overall effect on the success probability
ust be positive. No such simple intuition is available for the second

esult. Indeed, the formal proof shows that the result hinges crucially
n the relative rate at which the proportions of shirkers at the stable
nterior rest points for group sizes 𝑛 and 𝑛 + 1 converge to zero when
he cost approaches zero.

The left panel of Fig. 8 illustrates Proposition 3 by considering
hree different costs. For the smallest of these (𝑐 = 0.305), the success
robability for 𝜁 = 1 increases with group size for all group sizes
n {3,… , 10}, whereas for the largest of these (𝑐 = 0.31) the success
robability decreases with group size. These cost levels are thus suffi-
iently small (resp. sufficiently large) for the results in Proposition 3
o be applicable. This is not the case for the intermediate cost level
𝑐 = 0.3075) for which the left panel of Fig. 8 illustrates that there are
ases, not covered by Proposition 3, in which the success probability at
n interior stable rest point can be first increasing and then decreasing.

We note that the success probability is high and does not change
ery much with group size for the three cost parameters considered
n the left panel of Fig. 8. The right panel of Fig. 8 illustrates a
imilar behavior of the success probability for low values of the shirker
hreshold (𝜁 ∈ {1, 2, 3}), whereas for higher values (𝜁 ∈ {4, 5}) there
s a more pronounced effect of group size on the shirking probability.
ig. 9 illustrates the dependence of the success probability on the cost
f volunteering and the group size for 𝜁 ≤ 4 and suggests that, in
ost cases, the success probability remains high and almost unchanged
18

cross group sizes. A similar effect can be seen in Fig. 7, which
llustrates the dependency of the expected payoff on group size. This
rompts us to look into the limits of these two quantities and of the
olunteering probability when the group size tends to infinity. We do
o in the following section.

.5. The limit of infinitely large groups

From the results in Propositions 1 and 2 it is clear that the limits
∗
𝜁,𝑐 = lim

𝑛→∞
𝑝𝜁,𝑐 (𝑛),

𝑢∗𝜁,𝑐 = lim
𝑛→∞

𝑢𝜁,𝑐 (𝑛)

re well defined. Furthermore, it follows from Eq. (22) that
∗
𝜁,𝑐 = lim

𝑛→∞
𝜙𝜁,𝑐 (𝑛)

s given by
∗
𝜁,𝑐 = 𝑢∗𝜁,𝑐 + 𝑝∗𝜁,𝑐 ⋅ 𝑐. (23)

nd thus also well-defined. In the following, we will determine the
bove three limits for the case where 𝑐 < 𝑐∗𝜁 (as for 𝑐 > 𝑐∗𝜁 all limits are
qual to zero and the knife-edge case 𝑐 = 𝑐∗𝜁 requires a case distinction
ithout yielding additional insights).

We begin by observing that Lemma 1.3 implies 𝑞𝜁,𝑐 (𝑛) < 𝜁∕(𝑛 − 1)
or all 𝑛. It is then immediate that 𝑞∗𝜁,𝑐 = lim𝑛→∞ 𝑞𝜁,𝑐 (𝑛) = 0 holds. Using
q. (11) we thus obtain 𝑝∗𝜁,𝑐 = 1, i.e., the proportion of volunteers in
he minimal equilibrium converges to one. From Eq. (23) this in turn
mplies 𝑢∗𝜁,𝑐 = 𝜙∗

𝜁,𝑐 − 𝑐, i.e., in the limit, the expected payoff differs from
he success probability by the cost.

It remains to determine the limit of the success probability 𝜙∗
𝜁,𝑐 .

ven though the proportion of contributors converges to one, this limit
s smaller than one. The reason is that the speed of convergence of
𝜁,𝑐 (𝑛) to zero is sufficiently slow to ensure that the expected number
f shirkers

𝜁,𝑐 (𝑛) = 𝑛 ⋅ 𝑞𝜁,𝑐 (𝑛) (24)

onverges to a strictly positive limit. Indeed, we have (the proof is in
ppendix A.5):

emma 4. Let 𝑐 < 𝑐∗𝜁 . Then
∗ = lim 𝜇 (𝑛)
𝜁,𝑐 𝑛→∞ 𝜁,𝑐
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Fig. 9. Success probability 𝜙𝜁,𝑐 (𝑛) for 𝜁 ∈ {1, 2, 3, 4}, 𝑐 ∈ {0.01, 0.02,… , 0.5}, and 𝑛 ∈ {𝜁 + 2,… , 30}. The maximum and limit critical costs, 𝑐†𝜁 and 𝑐∗𝜁 , are shown respectively as red
solid and red dashed lines.
is given by the unique solutions 𝜆 to

𝜌𝜁 (𝜆) = 𝑐, (25)

in the interval (0, 𝜁), where 𝜌𝑘(𝜆) denotes the probability mass function of a
Poisson distribution with parameter 𝜆 (see Eq. (17)).

Taking into account that lim𝑛→∞ 𝑞𝜁,𝑐 (𝑛) = 0 implies that the expected
number of shirkers (from the perspective of an outside observer) and
other shirkers (from the perspective of a focal player) in a group
coincide in the limit, Eq. (25) is the natural counterpart to the pivotality
condition (8) when the number of shirkers among co-players follows a
Poisson distribution with mean value 𝜆, as it is the case in the limit for
𝑛 → ∞. Further, just as Lemma 1 identifies the unique solution to the
pivotality condition (8) in the interval (0, 𝜁∕(𝑛− 1)) as the (non-trivial)
minimal rest point, Lemma 4 indicates that the limit value 𝜇∗

𝜁,𝑐 of the
expected number of other shirkers in a group is the unique solution
to Eq. (25) in the interval (0, 𝜁). See Fig. 10 for an illustration of the
determination of 𝜇∗

𝜁,𝑐 and of the following proposition, which completes
our characterization of the limit (the proof is in Appendix A.5).

Proposition 4. Let 𝑐 < 𝑐∗𝜁 . Then,

𝑝∗𝜁,𝑐 = 1, 𝜙∗
𝜁,𝑐 = 𝑃𝜁 (𝜇∗

𝜁,𝑐 ) > 𝑐, 𝑢∗𝜁,𝑐 = 𝜙∗
𝜁,𝑐 − 𝑐 > 0, (26)

where

𝑃𝑘(𝜆) =
𝑘
∑

𝓁=0
𝜌𝓁(𝜆), 𝑘 = 0, 1,…

is the cumulative distribution function of a Poisson distribution with param-
eter 𝜆.

Proposition 4 demonstrates that, for sufficiently low costs of vol-
unteering, the proportion of volunteers at the minimal rest point con-
verges to one as the group size tends to infinity. In such a limit, both the
success probability and the expected payoff at equilibrium are positive
19
values that, as illustrated in Fig. 10, can be relatively large for small
values of the threshold number of shirkers 𝜁 . In particular, even though
the expected payoff at the minimal rest point decreases with group
size (as demonstrated in Proposition 2), the expected payoff can still
be substantially larger than the expected payoff at the full shirking
equilibrium (which is zero). Likewise, the probability that collective
action is successful can be relatively high. For instance, for a cost of
volunteering 𝑐 = 0.1 (so that the cost is equal to one-tenth of the
benefit), the limiting success probabilities 𝜙∗

𝜁,0.1 for 𝜁 ∈ {1, 2, 3, 4} are
always greater than 90% and given by 𝜙∗

1,0.1 ≈ 0.994, 𝜙∗
2,0.1 ≈ 0.976,

𝜙∗
3,0.1 ≈ 0.957, and 𝜙∗

4,0.1 ≈ 0.937. This said, note that a similar caveat
concerning equilibrium selection as the one we pointed out for finite
group sizes applies in the limit of infinitely large group sizes. In this
case, it can be shown (by similar arguments demonstrating that 𝑝∗𝜁,𝑐 =
1 holds) that the size of the basin of attraction of the volunteering
equilibrium 𝑞𝑠𝜁,𝑐 (𝑛) shrinks to zero.

4. Discussion

When the cost of volunteering is sufficiently small, the evolutionary
dynamics of the shirker’s dilemma are characterized by two stable equi-
libria: a polymorphic equilibrium sustaining some cooperation (or a
‘‘volunteering’’ equilibrium) and a monomorphic equilibrium where ev-
erybody shirks (or a ‘‘full-shirking’’ equilibrium). We have investigated
the group-size effects on the volunteering equilibrium and on a set of
quantities related to it, namely (i) the proportion of volunteers, (ii)
the probability that the public good is provided (or that the collective
action is successful), and (iii) the expected payoff at such equilibrium,
together with (iv) the size of the basin of attraction of the volunteering
equilibrium. Our analysis reveals non-trivial comparative statics. On
the one hand, we have found that, for all thresholds 𝜁 ≥ 1 and
sufficiently low costs, the proportion of volunteers at the volunteering
equilibrium increases with group size, and converges to one in the
limit of large group sizes. We also found that the probability that the
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Fig. 10. Illustration of the limit results in Lemma 4 and Proposition 4. Top left: The limit of the expected number of shirkers 𝜇∗
𝜁,𝑐 is given by the smaller of the two solutions

to the pivotality condition 𝜌𝜁 (𝜆) = 𝑐. The success probability 𝜙∗
𝜁,𝑐 is the probability 𝑃𝜁 (𝜇∗

𝜁,𝑐 ) that there are at most 𝜁 shirkers given that the number of shirkers follows a Poisson
istribution with expected value 𝜇∗

𝜁,𝑐 . The expected payoff 𝑢∗𝜁,𝑐 differs from 𝜇∗
𝜁,𝑐 by the cost 𝑐. Here, 𝜁 = 2 and 𝑐 = 0.2. Top right, bottom left, and bottom right: Limit proportion of

olunteers, 𝑝∗𝜁,𝑐 , expected payoff 𝑢∗𝜁,𝑐 , and success probability 𝜙∗
𝜁,𝑐 as functions of cost 𝑐, for 𝜁 ∈ {1, 2, 3, 4}.
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ublic good is provided at equilibrium can increase with group size and
onverges to a positive value. On the other hand, the expected payoff,
lthough positive, decreases with group size. Moreover, the basin of at-
raction of the volunteering equilibrium also decreases with group size
nd converges to zero in the limit of infinitely large group sizes. These
indings are in contrast to those of the volunteer’s dilemma (Diekmann,
985) and its generalization to threshold games in which a minimal
umber 𝜃 of ‘volunteers’ are needed (Palfrey and Rosenthal, 1984).
or these games, both the proportion of volunteers and the overall
robability that the public good is provided at equilibrium decrease
ith group size 𝑛 > 𝜃 (Nöldeke and Peña, 2020). In the limit, the

orresponding ‘‘volunteering’’ equilibrium of the volunteer’s dilemma
ends to zero, and its basin of attraction tends to one. This result is the
irror image of what happens in the shirker’s dilemma analyzed in this
aper.

We motivated the shirker’s dilemma in the Introduction with the
xamples of reproductive differentiation in Dictyostelium discoideum and
he punishment of free-riders in multi-player social dilemmas. Another
xample is the sentinel behavior of Arabian babblers (Argya squami-
eps): a territorial, cooperatively breeding species of songbirds (Zahavi,
990) living in arid areas along the Great Rift Valley. During the day,
roup members take turns as sentinels on treetops, while the other
roup members forage on the ground or on low branches. When a
entinel spots an approaching raptor, it emits an alarm call. Foragers
hen have two options. First, they can flee to shelter inside a thicket,
ithin which they are temporarily protected from the raptor but un-
ble to follow its moves. Alternatively, they can fly up and join the
entinel on treetops in calling towards the raptor. The latter is the
ypical choice of foragers, constituting more than 80% of foragers’
eactions (Ostreiher and Heifetz, 2020). Moreover, even lone Arabian
abblers devoid of territory (i.e., ‘‘floaters’’) engage in calling from
reetops towards raptors when they spot them (Ostreiher and Heifetz,
20
017). This signal is costly in terms of both the energy expended on
alling and the fatal risk in case they temporarily lose track of the
aneuvering raptor. The raptor, on its part, should decide whether to

ontinue hovering above the group until one of its members becomes
ess vigilant or, alternatively, to move on in search of other prey.
iding group members are the least vigilant when they emerge out
f the thicket, so moving on is better for the raptor than lurking for
iding birds only if the number of hiding birds (i.e., the number of

‘shirkers’’) is small enough. Dissuading the raptor from attack is a
ublic good enjoyed by all group members. This situation resembles
ore a shirker’s dilemma than a volunteer’s dilemma because the
redator’s decision to hang around or to move away is likely to depend
n the absolute number of non-vigilant individuals that it spots (i.e., the

‘shirkers’’), rather than on the absolute number of vigilant individuals
i.e., the ‘‘volunteers’’) that it is unlikely to catch. The fit of this example
ith the shirker’s dilemma model is not perfect, however, because if

he public good is not provided and the raptor attacks the group, the
hirker who ran to shelter and then comes out of it first is most likely to
e targeted by the raptor, and thus bears a higher cost than the other
roup members, and in particular higher than those who joined the
entinel on treetops and did not shirk.

For another related example of a shirker’s dilemma, consider the
obbing of terrestrial predators (such as snakes) by groups of birds.
hen one group member reveals a snake dug in the sand and lurking

or prey, that bird emits an alarm call, approaches the snake, and
ngages in bodily displays that make the bird look as big as possible.
oticing this, all or most group members then follow suit. In most
ases, the primary and most important benefit of such mobbing is that
t causes the predator to recognize that it has been detected, and to
eave the location (Caro, 2005). Here, too, as in the case of a raptor
pproaching a group of Arabian babblers, the predator presumably
oves away when it perceives that most of its potential prey are

igilant and that its outside options elsewhere might be more attractive.
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The simple model we explored in this paper is a benchmark for
more elaborate, relevant models. For instance, we modeled interactions
in a well-mixed population and hence among unrelated individuals.
It would be of interest to see if our predictions are still supported
when moving to spatially or family-structured populations where in-
teractants are related, and where relatedness can be a function of
group size (Lehmann and Rousset, 2010; Peña et al., 2015). Another
dimension for possible extensions arises by considering games with
continuous levels of effort and smooth benefits, rather than the binary-
choice game with sharp thresholds that we analyzed in this paper.
The pure equilibria of such continuous-action games do not predict the
independent randomization characteristic of mixed-strategy equilibria
of binary-action games, which received only partial empirical support
in the context of the sentinel behavior of Arabian babblers (Heifetz
et al., 2021). Further, such pure equilibria in continuous action games
are not prone to the well-known peculiarity of mixed-strategy equilibria
that individuals with higher costs or lower benefits cooperate with
a higher probability at equilibrium (Diekmann, 1994). Considering
continuous-action models would also allow us to explore if our result
that shirking decreases with group size holds more generally or is a
peculiarity of the binary-action models we have used here.
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Appendix. Proofs

A.1. Proof of Lemma 2

The equation 𝜋𝜁,𝑛+1(𝑞) = 𝜋𝜁,𝑛(𝑞) has a unique solution in the interval
(0, 1), given by 𝑞 = 𝜁∕𝑛. From the unimodality properties of the pivot
probability 𝜋𝜁,𝑛(𝑞) listed in Section 2.2, 𝜁∕(𝑛−1) maximizes 𝜋𝜁,𝑛(𝑞) over
𝑞 ∈ (0, 1). Thus, recalling the definition of the critical cost 𝑐𝜁,𝑛 given in
Eq. (9), we have 𝑐𝜁,𝑛 = 𝜋𝜁,𝑛 (𝜁∕(𝑛 − 1)) > 𝜋𝜁,𝑛 (𝜁∕𝑛) = 𝜋𝜁,𝑛+1 (𝜁∕𝑛) = 𝑐𝜁,𝑛+1.
This proves that 𝑐𝜁,𝑛 is strictly decreasing in 𝑛 and thus maximized at
the smallest possible value of 𝑛, which is 𝑛 = 𝜁+2. After setting 𝑛 = 𝜁+2
in (9) and simplifying this yields (15).

To prove the limit result, setting 𝑚 = 𝑛−1 in (7) and (9) and taking
the limit we obtain

̄∗𝜁 = lim
𝑚→∞

(

𝑚
𝜁

)(

𝜁
𝑚

)𝜁 (

1 −
𝜁
𝑚

)𝑚−𝜁
,

o that (16) follows from the Poisson approximation to the binomial
istribution.

Finally, to prove that 𝑐†𝜁 and 𝑐∗𝜁 are decreasing in 𝜁 , note that we can
rite 𝑐†𝜁 = 1∕ (1 + 1∕𝜁 )𝜁 and 𝑐∗𝜁+1∕𝑐

∗
𝜁 = (1∕𝑒) (1 + 1∕𝜁 )𝜁 . The function

1 + 1∕𝑥)𝑥 increases with 𝑥 for 𝑥 > 0 (see, e.g., Hardy et al. 1952,
heorem 140) and its limit as 𝑥 approaches infinity is 𝑒. Hence, 𝑐†𝜁

ncreases with 𝜁 and 𝑐∗ ∕𝑐∗ < 1 holds for all 𝜁 ≥ 1.
21

𝜁+1 𝜁
.2. Proof of Lemma 3

For 𝑐 < 𝑐𝜁,𝑛+1 it follows from Lemma 1.3 that for group size 𝑛+1 the
eplicator dynamic has two interior rest points satisfying 𝑞𝑠𝜁,𝑐 (𝑛 + 1) <
∕𝑛 < 𝑞𝑢𝜁,𝑐 (𝑛 + 1). From Lemma 2 the inequality 𝑐 < 𝑐𝜁,𝑛+1 implies
< 𝑐𝜁,𝑛. Hence, the replicator dynamic also has two interior rest points

or group size 𝑛. Applying Lemma 1.3 again these rest points satisfy
𝑠
𝜁,𝑐 (𝑛) < 𝜁∕(𝑛 − 1) < 𝑞𝑢𝜁,𝑐 (𝑛). From Proposition 1 in Peña and Nöldeke,
018 we have 𝑞𝑠𝜁,𝑐 (𝑛 + 1) < 𝑞𝑠𝜁,𝑐 (𝑛) and 𝑞𝑢𝜁,𝑐 (𝑛 + 1) < 𝑞𝑢𝜁,𝑐 (𝑛). At the
eginning of the proof of Lemma 2 we have established 𝜋𝜁,𝑛 (𝜁∕𝑛) =
̄𝜁,𝑛+1. As 𝜋𝜁,𝑛 (𝑞) is increasing in 𝑞 for 𝑞 < 𝜁∕(𝑛−1) and 𝑐 < 𝑐𝜁,𝑛+1 holds,
he pivotality condition (8) implies the remaining inequality in (20),
amely 𝑞𝑠𝜁,𝑐 (𝑛) < 𝜁∕𝑛.

.3. Proof of Proposition 2

It is immediate from Eq. (19) that 𝑢𝜁,𝑐 (𝑛) = 0 holds if 𝑛 > 𝑛̄𝜁,𝑐 .
urther, it is also immediate from Eq. (19) that 𝑛 = 𝑛̄𝜁,𝑐 implies 𝑢𝜁,𝑐 (𝑛) >
𝜁,𝑐 (𝑛+ 1) = 0. To prove the proposition it remains to consider the case
𝜁,𝑐 (𝑛) = 𝑞𝑠𝜁,𝑐 (𝑛) and 𝑞𝜁,𝑐 (𝑛 + 1) = 𝑞𝑠𝜁,𝑐 (𝑛 + 1). We may therefore assume
hroughout the following that 𝑞𝜁,𝑐 (𝑛) and 𝑞𝜁,𝑐 (𝑛+1) satisfy the pivotality
ondition (8) and, from Lemma 3, satisfy 0 < 𝑞𝜁,𝑐 (𝑛+ 1) < 𝑞𝜁,𝑐 (𝑛) < 𝜁∕𝑛.

Showing that 𝑢𝜁,𝑐 (𝑛+1) < 𝑢𝜁,𝑐 (𝑛) holds is equivalent to showing that
− 𝑢𝜁,𝑐 (𝑛+ 1) > 1 − 𝑢𝜁,𝑐 (𝑛) holds. From (2) and (13) this inequality is in

urn equivalent to
𝑛
∑

𝑘=𝜁

(

𝑛
𝑘

)

(

𝑞𝜁,𝑐 (𝑛 + 1)
)𝑘 (1 − 𝑞𝜁,𝑐 (𝑛 + 1)

)𝑛−𝑘

>
𝑛−1
∑

𝑘=𝜁

(

𝑛 − 1
𝑘

)

(

𝑞𝜁,𝑐 (𝑛)
)𝑘 (1 − 𝑞𝜁,𝑐 (𝑛)

)𝑛−1−𝑘 . (27)

Begin by noting that (27) holds if the inequality

𝑛
𝑘

)

(

𝑞𝜁,𝑐 (𝑛 + 1)
)𝑘 (1 − 𝑞𝜁,𝑐 (𝑛 + 1)

)𝑛−𝑘

≥
(

𝑛 − 1
𝑘

)

(

𝑞𝜁,𝑐 (𝑛)
)𝑘 (1 − 𝑞𝜁,𝑐 (𝑛)

)𝑛−1−𝑘 (28)

olds for all 𝑘 ∈ {𝜁,… , 𝑛 − 1}, This is so because the last summand on
the left side of (27), that is,

(

𝑞𝜁,𝑐 (𝑛 + 1)
)𝑛, is strictly positive.

Let

(𝑘) =

(𝑛−1
𝑘

) (

𝑞𝜁,𝑐 (𝑛)
)𝑘 (1 − 𝑞𝜁,𝑐 (𝑛)

)𝑛−1−𝑘

(𝑛
𝑘

) (

𝑞𝜁,𝑐 (𝑛 + 1)
)𝑘 (1 − 𝑞𝜁,𝑐 (𝑛 + 1)

)𝑛−𝑘 (29)

denote the likelihood ratio for having, among the co-players of a focal
individual, exactly 𝑘 shirkers at the minimal rest point with group sizes
𝑛 and 𝑛+1. Obviously, (28) is equivalent to the claim that 𝐿(𝑘) ≤ 1 holds
or 𝑘 ∈ {𝜁,… , 𝑛 − 1}.

Because both 𝑞𝜁,𝑐 (𝑛) and 𝑞𝜁,𝑐 (𝑛+1) satisfy the pivotality condition (8),
e know that for 𝑘 = 𝜁 the terms on the left side and the right side of

28) are both equal to 𝑐. This shows 𝐿(𝜁 ) = 1.
From (29) we have 𝐿(𝑘 + 1) = 𝑟(𝑘)𝐿(𝑘), where

(𝑘) =
( 𝑛 − 1 − 𝑘

𝑛 − 𝑘

)

⋅
( 𝑞𝜁,𝑐 (𝑛)
𝑞𝜁,𝑐 (𝑛 + 1)

)

⋅
(1 − 𝑞𝜁,𝑐 (𝑛 + 1)

1 − 𝑞𝜁,𝑐 (𝑛)

)

is strictly decreasing in 𝑘. Hence, provided that we can establish 𝐿(𝜁 +
1) ≤ 1 or, equivalently (from 𝐿(𝜁 ) = 1), 𝑟(𝜁 ) ≤ 1, our proof is finished
(as 𝑟(𝜁 ) ≤ 1 implies 𝑟(𝑘) < 1 for all 𝑘 > 𝜁 , and thus 𝐿(𝑘) < 1 for all
𝑘 > 𝜁 + 1).

We first demonstrate 𝑟(𝜁 ) ≤ 1 for cost sufficiently close to (but
below) the threshold 𝑐𝜁,𝑛+1 at which the stable interior rest point 𝑞𝑠𝜁,𝑐 (𝑛+
1) disappears. Straightforward calculations (see the beginning of the
Proof of Lemma 2) show that

𝜋𝜁,𝑛

(

𝜁
𝑛

)

= 𝜋𝜁,𝑛+1

(

𝜁
𝑛

)

= 𝑐𝜁,𝑛+1.

It then follows from Lemma 3 that both 𝑞𝜁,𝑐 (𝑛+ 1) and 𝑞𝜁,𝑐 (𝑛) converge
to 𝜁∕𝑛 as 𝑐 converges to 𝑐 from below. When 𝑐 converges to 𝑐
𝜁,𝑛+1 𝜁,𝑛+1

https://github.com/jorgeapenas/ShirkersDilemma
https://github.com/jorgeapenas/ShirkersDilemma
https://github.com/jorgeapenas/ShirkersDilemma
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from below, 𝑟(𝜁 ) thus converges to (𝑛−1− 𝜁 )∕(𝑛− 𝜁 ) < 1, implying that
𝑟(𝜁 ) < 1 holds for all sufficiently high 𝑐 < 𝑐𝜁,𝑛+1.

Now suppose there exists some 𝑐 ∈
(

0, 𝑐𝜁,𝑛+1
)

such that 𝐿(𝜁 + 1) >
holds. As 𝑞𝜁,𝑐 (𝑛) and 𝑞𝜁,𝑐 (𝑛 + 1) are both continuous in 𝑐 and the

ikelihood ratio (29) is also continuous in these probabilities it follows
hat there exists 𝑐 ∈

(

0, 𝑐𝜁,𝑛+1
)

such that 𝐿(𝜁 + 1) = 1 holds. Fix such 𝑐.
rom 𝐿(𝜁 ) = 1, we then have 𝑟(𝜁 ) = 1. Because 𝑟(𝑘) is strictly decreasing

in 𝑘, we then have 𝑟(𝑘) > 1 for all 𝑘 < 𝜁 and 𝑟(𝑘) < 1 for all 𝑘 > 𝜁 . This
implies 𝐿(𝑘) < 1 for all 𝑘 > 𝜁 + 1 and also 𝐿(𝑘) < 1 for all 𝑘 < 𝜁 . But
this is impossible because the probabilities for obtaining 𝑘 = 0,… , 𝑛+1
shirkers need to sum to one for both group sizes. We conclude that
𝐿(𝜁 + 1) ≤ 1 holds for all 𝑐 ∈

(

0, 𝑐𝜁,𝑛+1
)

, thus finishing the proof.

A.4. Proof of Proposition 3

We have already noted in the proof of Proposition 2 that 𝑞𝜁,𝑐 (𝑛+ 1)
and 𝑞𝜁,𝑐 (𝑛) both converge to 𝜁∕𝑛 as 𝑐 converges to 𝑐𝜁,𝑛+1 from below.
From (12) the corresponding limit values of the success probabilities
𝜙𝜁,𝑐 (𝑛) and 𝜙𝜁,𝑐 (𝑛+ 1) when 𝑐 → 𝑐𝜁,𝑛+1 are given by 𝛱𝜁,𝑛(𝜁∕𝑛) for group
size 𝑛 and by 𝛱𝜁,𝑛+1(𝜁∕𝑛) for group size 𝑛+1. Observing that 𝛱𝜁,𝑛+1(𝑞) <
𝛱𝜁,𝑛(𝑞) holds for all 𝑞 ∈ (0, 1), it follows that 𝜙𝜁,𝑐 (𝑛 + 1) < 𝜙𝜁,𝑐 (𝑛) holds
for 𝑐 sufficiently close to but smaller than 𝑐𝜁,𝑛+1.

The argument demonstrating the inequality 𝜙𝜁,𝑐 (𝑛 + 1) > 𝜙𝜁,𝑐 (𝑛) for
𝑐 sufficiently close to 0 requires a detailed investigation of the limit
behavior of these success probabilities when 𝑐 → 0. We thus proceed in
a number of steps.

First, in the limit when 𝑐 tends to zero both 𝑞𝜁,𝑐 (𝑛) and 𝑞𝜁,𝑐 (𝑛 + 1)
converge to zero, i.e.,

lim
𝑐→0

𝑞𝜁,𝑐 (𝑛) = lim
𝑐→0

𝑞𝜁,𝑐 (𝑛 + 1) = 0. (30)

This is immediate from the properties of the pivot probabilities we
noted in Section 2.3 and the fact (cf. Eq. (20) in the statement of
Lemma 3) that the stable interior rest points 𝑞𝜁,𝑐 (𝑛) and 𝑞𝜁,𝑐 (𝑛+1) lie in
(0, 𝜁∕𝑛) for all 𝑐 ∈ (0, 𝑐𝜁,𝑛+1) (and thus cannot converge to 1).

Second, it is immediate from (30) and the fact that the success prob-
ability is equal to 1 when the proportion of shirkers in the population
is zero that

lim
𝑐→0

𝜙𝜁,𝑐 (𝑛 + 1) = lim
𝑐→0

𝜙𝜁,𝑐 (𝑛) = 1. (31)

Hence, a sufficient condition for the inequality 𝜙𝜁,𝑐 (𝑛 + 1) > 𝜙𝜁,𝑐 (𝑛) to
hold for sufficiently small 𝑐 is that the inequality
𝑑𝜙𝜁,𝑐 (𝑛 + 1)

𝑑𝑐
>

𝑑𝜙𝜁,𝑐 (𝑛)
𝑑𝑐

(32)

olds for all sufficiently small 𝑐.
Third, using (12) and the chain rule, we have

𝑑𝜙𝜁,𝑐 (𝑛 + 1)
𝑑𝑐

=
𝑑𝛱𝜁,𝑛+1(𝑞𝜁,𝑐 (𝑛 + 1))

𝑑𝑞
𝑑𝑞𝜁,𝑐 (𝑛 + 1)

𝑑𝑐
. (33)

Either by direct calculation or by applying the derivative rule for
polynomials in Bernstein form (see, e.g., Peña et al. 2014, Eq. 5), we
find
𝑑𝛱𝜁,𝑛+1(𝑞𝜁,𝑐 (𝑛 + 1))

𝑑𝑞
= −(𝑛 + 1)𝜋𝜁,𝑛+1(𝑞𝜁,𝑐 (𝑛 + 1)) = −(𝑛 + 1)𝑐, (34)

here the last equality uses the pivotality condition (8). Using (8) once
ore, we can apply the implicit function theorem to determine

𝑑𝑞𝜁,𝑐 (𝑛 + 1)
𝑑𝑐

= 1
𝑑𝜋𝜁,𝑛+1(𝑞𝜁,𝑐 (𝑛+1))

𝑑𝑞

. (35)

ombining these calculations by substituting (34) and (35) into (33),
e have

𝑑𝜙𝜁,𝑐 (𝑛 + 1)
𝑑𝑐

= −
(𝑛 + 1)𝑐

𝑑𝜋𝜁,𝑛+1(𝑞𝜁,𝑐 (𝑛+1))
. (36)
22

𝑑𝑞
e

imilarly, we obtain
𝑑𝜙𝜁,𝑐 (𝑛)

𝑑𝑐
= − 𝑛𝑐

𝑑𝜋𝜁,𝑛(𝑞𝜁,𝑐 (𝑛))
𝑑𝑞

. (37)

Substituting (36) and (37) into (32), and rearranging, it follows that
condition (32) is equivalent to
( 𝑛 + 1

𝑛

) 𝑑𝜋𝜁,𝑛(𝑞𝜁,𝑐 (𝑛))
𝑑𝑞

<
𝑑𝜋𝜁,𝑛+1(𝑞𝜁,𝑐 (𝑛 + 1))

𝑑𝑞
. (38)

Fourth, we can again use either direct calculation or apply the
derivative rule for polynomials in Bernstein form to the definition of the
pivot probabilities in (7) to determine the two derivatives appearing in
(38). This yields
𝑑𝜋𝜁,𝑛+1(𝑞𝜁,𝑐 (𝑛 + 1))

𝑑𝑞
= 𝑛

[(

𝑛 − 1
𝜁 − 1

)

𝑞𝜁,𝑐 (𝑛 + 1)𝜁−1(1 − 𝑞𝜁,𝑐 (𝑛 + 1))𝑛−𝜁

−
(

𝑛 − 1
𝜁

)

𝑞𝜁,𝑐 (𝑛 + 1)𝜁 (1 − 𝑞𝜁,𝑐 (𝑛 + 1))𝑛−1−𝜁
]

,

𝑑𝜋𝜁,𝑛(𝑞𝜁,𝑐 (𝑛))
𝑑𝑞

= (𝑛 − 1)
[(

𝑛 − 2
𝜁 − 1

)

𝑞𝜁,𝑐 (𝑛)𝜁−1(1 − 𝑞𝜁,𝑐 (𝑛))𝑛−1−𝜁

−
(

𝑛 − 2
𝜁

)

𝑞𝜁,𝑐 (𝑛)𝜁 (1 − 𝑞𝜁,𝑐 (𝑛))𝑛−2−𝜁
]

.

sing these expressions, we can rewrite (38) as

(𝑐) > 𝑛 + 1
𝑛

, (39)

where

𝐾(𝑐)

=
𝑛
[

(𝑛−1
𝜁−1

)

𝑞𝜁,𝑐 (𝑛 + 1)𝜁−1(1 − 𝑞𝜁,𝑐 (𝑛 + 1))𝑛−𝜁 −
(𝑛−1

𝜁

)

𝑞𝜁,𝑐 (𝑛 + 1)𝜁 (1 − 𝑞𝜁,𝑐 (𝑛 + 1))𝑛−1−𝜁
]

(𝑛 − 1)
[

(𝑛−2
𝜁−1

)

𝑞𝜁,𝑐 (𝑛)𝜁−1(1 − 𝑞𝜁,𝑐 (𝑛))𝑛−1−𝜁 −
(𝑛−2

𝜁

)

𝑞𝜁,𝑐 (𝑛)𝜁 (1 − 𝑞𝜁,𝑐 (𝑛))𝑛−2−𝜁
] .

(40)
Fifth, we have

lim
𝑐→0

𝑞𝜁,𝑐 (𝑛 + 1)
𝑞𝜁,𝑐 (𝑛)

=
(

𝑛 − 𝜁
𝑛

)1∕𝜁
. (41)

o see this, observe that from the pivotality condition (8) we have
𝜁,𝑛+1(𝑞𝜁,𝑐 (𝑛 + 1)) = 𝜋𝜁,𝑛(𝑞𝜁,𝑐 (𝑛)) for all 𝑐 ∈ (0, 𝑐𝜁,𝑛+1). Substituting from
he definition of the pivot probabilities in (7) it follows that
(

𝑛
𝑛 − 𝜁

)( 𝑞𝜁,𝑐 (𝑛 + 1)
𝑞𝜁,𝑐 (𝑛)

)𝜁 ( (1 − 𝑞𝜁,𝑐 (𝑛 + 1))𝑛−𝜁

(1 − 𝑞𝜁,𝑐 (𝑛))𝑛−1−𝜁

)

= 1 (42)

holds for all 𝑐 ∈ (0, 𝑐𝜁,𝑛+1). Clearly, the equality in (42) is preserved in
he limit when 𝑐 → 0. Using (30) to conclude that the third ratio on the
eft side of (42) converges to 1, we thus have

𝑛
𝑛 − 𝜁

)

lim
𝑐→0

( 𝑞𝜁,𝑐 (𝑛 + 1)
𝑞𝜁,𝑐 (𝑛)

)𝜁

= 1,

mplying (41).
Sixth, making use of (30) and (41) it is straightforward to show that

lim
→0

𝐾(𝑐) =
( 𝑛
𝑛 − 1

)

(

𝑛 − 1
𝑛 − 𝜁

)(

𝑛 − 𝜁
𝑛

)
𝜁−1
𝜁

=
(

𝑛
𝑛 − 𝜁

)
1
𝜁
,

where 𝐾(𝑐) had been defined in (40). It follows that (39) holds for all
sufficiently small 𝑐 if
(

𝑛
𝑛 − 𝜁

)
1
𝜁
> 𝑛 + 1

𝑛
. (43)

bserve that for 𝜁 = 1 the inequality in (43) reduces to 𝑛2 > (𝑛+1)(𝑛−1),
which holds for all 𝑛.

Seventh, to finish the proof it remains to establish (43) for 1 < 𝜁 <
𝑛 − 1. As we have already seen that (43) holds for 𝜁 = 1 it suffices to
argue that for any given 𝑛 ≥ 3 the left side of (43) is increasing in 𝜁
ver the relevant range. Using the change of variable 𝑥 = (𝑛− 𝜁 )∕𝜁 this
ollows from the fact that (1 + 1∕𝑥)𝑥+1 is decreasing in 𝑥 for 𝑥 > 0 (see,
.g., Hardy et al. 1952, last line on page 102).
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A.5. Proofs of Lemma 4 and Proposition 4

Let

𝜆𝜁,𝑐 (𝑛) = (𝑛 − 1) ⋅ 𝑞𝜁,𝑐 (𝑛),

and

𝜆∗𝜁,𝑐 = lim
𝑛→∞

𝜆𝜁,𝑐 (𝑛).

Taking into account that Lemma 1.3 implies 𝜆𝜁,𝑐 (𝑛) < 𝜁 for all 𝑛,
arguments that are otherwise identical to the ones in the proof of
Lemma 3 in Nöldeke and Peña, 2020 establish Lemma 4 provided that
𝜆∗𝜁,𝑐 = 𝜇∗

𝜁,𝑐 holds. As both 𝜇𝜁,𝑐 (𝑛)−𝜆𝜁,𝑐 (𝑛) = 𝑞𝜁,𝑐 (𝑛) and lim𝑛→∞ 𝑞𝜁,𝑐 (𝑛) = 0
old, this is the case.

We have already noted in the text that the equalities 𝑝∗𝜁,𝑐 = 1
nd 𝑢∗𝜁,𝑐 = 𝜙𝜁,𝑐 (𝑛) − 𝑐 in the statement of Proposition 4 follow from
emma 1.3. From a generalization of the classical Poisson approxima-
ion (see, e.g., Billingsley 1995, Theorem 23.2) 𝜇𝜁,𝑐 (𝑛) → 𝜇∗

𝜁,𝑐 implies
𝛱𝜁,𝑛

(

𝑞𝜁,𝑐 (𝑛)
)

→ 𝑃𝜁 (𝜇∗
𝜁,𝑐 ). From (12) and the definition of 𝜙∗

𝜁,𝑐 this
mplies 𝜙∗

𝜁,𝑐 = 𝑃𝜁 (𝜇∗
𝜁,𝑐 ), establishing the remaining equality in (26). An

nalogous argument, using the equality 𝜆∗𝜁,𝑐 = 𝜇∗
𝜁,𝑐 established in the

bove proof of Lemma 4 and Eq. (13), shows that 𝑢∗𝜁,𝑐 = 𝑃𝜁−1(𝜇∗
𝜁,𝑐 ) > 0,

here the inequality follows from 𝜇∗
𝜁,𝑐 > 0. The proof is finished by

observing that the inequality 𝜙∗
𝜁,𝑐 > 𝑐 then follows from 𝑢∗𝜁,𝑐 = 𝜙∗

𝜁,𝑐 − 𝑐.
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