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1 UPB, Medelĺın, Colombia
juan.penasuarez@gmail.com
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Abstract. The ubichip is a reconfigurable digital circuit with special re-
configuration mechanisms, such as dynamic routing and self-replication,
for supporting the implementation of bio-inspired hardware systems. The
dynamic routing mechanism allows to create and destroy interconnec-
tions between remote units in a distributed fashion, thus proving useful
for implementing cellular systems featuring dynamic topologies. Evolu-
tionary graph theory investigates genetic and cultural evolution processes
using the mathematical formalism of both evolutionary game and graph
theory. Populations are embedded in graphs representing interaction and
imitation links. Payoffs are assigned and successful individuals are im-
itated with high probability. This paper describes the hardware imple-
mentation of a general evolutionary graph model in which the imitation
network changes over time by exploiting the dynamic routing capabil-
ities of the ubichip. As a particular example, we analyze the case of a
coordination game played by agents arranged in a cycle in which imita-
tion links are randomly created so as to simulate dynamic small-world
networks.

Keywords: Reconfigurable circuit, dynamic routing, dynamic topology,
evolutionary game theory, graph theory.

1 Introduction

The work presented in this paper has been developed in the framework of the
european project Perplexus [1]. Perplexus aims to develop a scalable hardware
platform made of custom reconfigurable devices endowed with bio-inspired ca-
pabilities that will enable the simulation of large-scale complex systems and the
study of emergent behaviors in a virtually unbounded wireless network of com-
puting modules. At the heart of these computing modules there is the ubichip [2],
a custom reconfigurable electronic device featuring dynamic routing, distributed
self-reconfiguration and a simplified connectivity. The ubichip thus offers an in-
teresting set of mechanisms for supporting networks featuring different types
of plasticity, like adding, removing, and replacing nodes and links in a directed
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graph. This dynamic directed graph can be a synaptogenetic neural network, like
the work presented in [3], or an evolutionary graph model in which the imitation
network changes over time like the work presented in this paper.

The main scientific objective of the Perplexus project is to ease the simulation
large-scale complex systems. One of such complex systems are societies as loci of
culture dissemination or cultural evolution, i.e. the general dynamic process re-
sulting from the changes in cultural traits (beliefs, behaviors, ideas) over time in a
human population. The population macro-phenomena to be explained can be, for
instance, the emergence of globally shared norms, a social contract, cooperative
behavior, or opinion convergence or polarization. The micro-processes generating
these macro-processes are inter-personal social influence and imitation.

Evolutionary game theory [4] is the evolutionary extension of classical game
theory. Originally conceived as an application of the game theory formalism to
model genetic evolution [5], it has also been used to model how cultural traits
spread in a population, i.e. how culture evolves [6]. In cultural evolutionary game
models, individuals are characterized by a cultural trait ruling behavior, which
we call strategy. The payoff or social success of an individual is conditioned by
the strategy not only it but also other individuals in the population follow. In the
game theory formalism, this frequency-dependent success is modeled according
by means of a payoff matrix. Particular orderings of the payoffs determine differ-
ent games, and games are thus simple metaphors of social interaction. Evolution
in these models stem from the aggregation of micro-level processes of selective
imitation. In the most common of these cultural evolution models, individuals
have a tendency to imitate more successful individuals, or those having obtained
a large payoff.

Evolutionary game models generally assume large, well-mixed populations in
which everybody interacts with everybody and anyone can be imitated. Evolu-
tionary graph theory [7] models more realistic population structures by embed-
ding the population in graphs representing social networks. A given individual
interacts with and imitates only its immediate neighbors, and not any member
of the whole population. The sole fact of restricting interaction and imitation to
neighbors introduces important changes in the dynamics of the cultural evolution-
ary process. For instance, in the famous Prisoner’sDilemma game, cooperators are
doomed to extinction in large and well-mixed populations, but are able to survive
in clusters when populations have some kind of topological structure [8].

When no particular population topology is assumed, evolutionary models of-
ten reduce to difference or differential equations that can be analytically solved.
However, when spatial or network structure is taken into account, the resulting
model becomes analytically intractable and can only be studied by means of
agent-based or complex-system simulations. One of the main problems faced by
complex-system modeling is the curse of dimensionality associated to sensitivity
analysis, i.e. how sensitive the predictions of a model are to variations in its pa-
rameters. Sensitivity analysis of agent-based models often imply running a large
number of simulations, varying parameters in all combinations. Frequently, the
total number of required simulations for covering the parameter space can be
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simply unfeasible for traditional computing systems. It is our claim that one way
of alleviating this problem is to exploit the explicit parallelism of agent-based
models, and to implement them partially or completely in dedicated hardware.

This work explores the ubichip implementation of an evolutionary graph
model with a dynamic imitation network. The paper is organized as follows.
Section 2 introduces the ubichip. Section 3 defines the evolutionary graph model
with dynamic topology we are interested in, while section 4 describes its hard-
ware implementation on the ubichip. Section 5 presents the experimental setup
and results. Finally, we draw some conclusions in section 6.

2 Ubichip

The ubichip is a custom reconfigurable electronic device capable of implementing
bio-inspired mechanisms such as growth, learning, and evolution [2]. These bio-
inspired mechanisms are possible thanks to reconfigurability mechanisms like
dynamic routing, distributed self-reconfiguration, and a simplified connectivity.

The ubichip is mainly composed of three reconfigurable layers. The first layer
consists of an array of ubicells, the reconfigurable logic elements used for com-
putation purposes. A ubicell is composed of four 4-input look-up tables (LUT)
and four flip-flops (DFFs). These ubicells can be configured in different modes
such as counters, FSMs, shift-registers, 4 independent registered and combinato-
rial LUTs, adders, subtractors, etc. An ubicell can also implement a simple 4-bit
processing element of a single instruction, multiple data (SIMD) processing plat-
form, and several ubicells can be merged to create a higher resolution processor.
In this last mode, an on-chip centralized sequencer is responsible for decoding
the instructions for the multi-processor management. A particular configuration
mode of a ubicell, very important for the work presented in this paper, is the 64-
bit LFSR mode, which permits using the 64 configuration bits of the four 4-input
LUTs as a good quality pseudo-random number generator. This feature allows
us to implement processes such as probabilistic functions and pseudo-random
event triggers at a very low cost of reconfigurable resources.

The second layer is made of self-replicating units that allow parts of the cir-
cuit to self-replicate somewhere else on the chip, independently of any external
control. This truly new feature can be very useful for heterogeneous cellular
systems with dynamic topologies. A node in a graph can, for instance, decide
to self-replicate or to self-destroy according to an underlying algorithm, so as
to populate the complete chip. This mechanism is not exploited by the work
presented in this paper, but more details of it can be found in [9].

Finally, the third layer contains dynamic routing units connected to their
eight neighbors that permit the ubicells to dynamically connect to any part of
the circuit. Cellular systems with dynamic topologies, requiring the ability of
creating and destroying paths at runtime, can greatly benefit from this feature.
The dynamic routing mechanism implemented in the routing units, along with
the computational capabilities offered by the ubicells, allow us to tackle the
modeling of evolutionary graph systems exhibiting dynamic topologies.
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Fig. 1. Macrocell architecture

Based on identifiers and a concept of sources and targets trying to reach
a correspondent with the same ID, this mechanism looks quite similar to the
system described in [10], while having enhancements on different aspects. The
ID, being stored in a routing unit, can be dynamically modified by an ubicell
connected to it. The basic idea of the routing algorithm is to construct paths
between sources and targets by dynamically configuring multiplexers, and by
letting data follow the same path for each pair of source and target. Sources
and targets can decide to connect to their corresponding unit at any time by
launching a routing process. These routing processes are triggered by the ubicells,
so a node in a graph, for instance, can decide to create a new connection with
another node. During a routing process, after the identification of the sources
and targets based on their IDs, a phase of path creation executes a breadth-
first search distributed algorithm, looking for the shortest path. If such a path
exists, the multiplexers are configured accordingly. If not, the ubicell is noticed
about the failure of the routing process. Once a source and a target have been
connected, the path is fixed and data can be directly sent at any time, until the
path is destroyed.

The management of the dynamic routing is performed via control signals from
the ubicells to the routing unit. These signals create and destroy connections,
and modify the routing unit ID. In the opposite direction we have a couple
of flags that allow the routing unit to inform the system implemented on the
ubicells whether or not a connection is currently being created (is connecting)
and whether or not a specific routing unit is connected (is connected).

The three layers of the ubichip are interconnected so as to allow the ubi-
cell layer to control the two top layers. Units from the three different layers
are grouped together and constitute what we call a macrocell. A macrocell con-
tains four ubicells connected to a routing unit and a self-reconfiguration unit as
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depicted in Fig. 1. The ubicell layer can thus implement a circuit able to control
the dynamic routing and the self-replication layers.

3 Evolutionary Graph Model with Dynamic Topology

We are particularly interested in evolutionary graph models in which, as recently
proposed by Ohtsuki et al. [11], the connectivity between individuals is given by
two graphs: the interaction graph H and the imitation graph1 G. Edges of H
determine who interacts with whom and edges of G determine who imitates
whom. Each agent in the population is labeled by an index i, also referring
to the node it occupies in both graphs. Each agent is also characterized by its
strategy si, which can take one of two values: A or B. The set of neighbors of i in
H (resp. in G) is denoted by NH(i) (resp. NG(i)). We define the neighborhood
of i as the set of nodes having a directed edge with i as the final vertex.

Depending on its current strategy and the strategies of the agents in its neigh-
borhood NH(i), agent i gets an accumulated payoff given by:

Wi(t) =
∑

j∈NH(i)

V (si(t), sj(t)) ,

where V is the payoff matrix of a simple two-person symmetric game:

A B
A a b
B c d

After interaction, agents in our model revise their strategies via an imitation rule
that takes into account the distribution of payoffs and the proportion of behaviors
in their imitation neighborhoods NG(i). We use the following general rule: the
focal agent i first draws an agent j at random from its neighborhood and then
decides to copy j’s strategy depending on the difference between payoffs Wj(t)−
Wi(t). We consider two alternatives. The deterministic update makes agent i
copy j if Wj(t) − Wi(t) and keep its old strategy otherwise. The probabilistic
update makes agent i imitate j with a probability given by f (Wj(t) − Wi(t)) >
0, where f is any suitable monotonic increasing function. It must be noticed here
that, even when using the deterministic update rule, imitation is essentially a
stochastic process since the agent to be imitated is chosen randomly.

Depending on the initial distribution of strategies, the structure of the inter-
action and imitation graphs, the entries of the payoff matrix and the imitation
rule used, the system will eventually evolve towards one of its two absorbing
states: all-A (all individuals follow strategy A) and all-B (all individuals follow
strategy B). The aim of evolutionary graph theory is examining what conditions
lead to the fixation of one of two competing strategies.

1 Originally called replacement graph in [11]. We call it imitation graph since we are
interested in cultural rather than genetic evolutionary processes.
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Fig. 2. Example of the dynamics of an imitation graph for a population of 10 agents.
The imitation graph starts as a simple cycle (a). A first dynamic connection is created:
node 5 is connected to node 10, node 10 is disconnected from neighboring node 9 (b).
A second dynamic connection is created: node 4 is connected to node 8, node 8 is
disconnected from neighboring node 9 (c). One dynamic connection is killed (d).

In this paper, we explore one particular instance of this general model in which
the interaction graph is a static cycle and the imitation graph is a directed,
dynamic small-world network constructed over this cycle. With this setup, we
try to model the fact that individuals often compare their success with and
imitate others with whom they do not interact, and that the resulting imitation
social network is in general more dynamic than the interaction graph (think of
the effect of long-range communication in contemporary societies).

The dynamics of the considered imitation graph are exemplified in Fig. 2. The
imitation graph starts as a cycle perfectly coinciding with the interaction graph, so
that each node is connected to its left and right neighbors. Each node has a fixed
probability pc of connecting to a random node. When this happens, the target
node is disconnected from one of their immediate neighbors, to assure that the
size of the imitation neighborhoods of all nodes remains equal to 2. This arbitrary
constraint was added in order to to simplify the hardware implementation of the
model, to be explained in Section 4. Finally, all dynamic connections have a fixed
probability pk of being deleted. It can be seen that graphs with pc/pk >> 1 will
grow in disorder whereas graphs with pc/pk << 1 will practically be cycles with
some small-world connections being sporadically created.

4 Evolutionary Graph Model in the Ubichip

The dynamic routing capabilities of the ubichip offer an interesting connectivity
mechanism for implementing the dynamic topology evolutionary graph model
described in the previous section. In this section we propose an architecture for
such a model and describe its implementation on the ubichip.

4.1 Evolutionary Graph Model Architecture

We consider two hardware implementations: the first one for an agent with a
deterministic imitation rule and the second one for an agent with a probabilis-
tic update rule. The hardware implementation of the first agent is illustrated
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in Fig. 3. In this figure we can identify two different types of inputs, one for
the interaction graph and the other for the imitation graph. For the interac-
tion graph, the inputs sl (“strategy left”) and sr (“strategy right”) provide the
strategies of neighbor agents. These two inputs, along with the current agent’s
strategy si stored in a register, allow the computation of the agent’s payoff with
a payoff matrix implemented in the LUT. Strategy A is coded as a logical 0, and
strategy B as a logical 1. Figure 4 depicts how to implement such matrix in a
LUT. This implementation considers a 3-input and n-output LUT, where n is
defined by the desired resolution of the matrix entries. In the specific case of our
implementation in the ubichip we set n = 3, i.e. each entry of the payoff matrix
can consist of one out of eight different possible values.

Unlike the interaction graph, the topology of the imitation graph changes over
time. We exploit the dynamic routing capabilities of the ubichip to make imi-
tation edges modifiable and accessible from the dynamic routing units. In order
to do this, the architecture of Fig. 3 has the inputs Wl and Wr for the payoffs
of neighboring agents (i.e. the left and the right neighbors in the interaction
graph), and the inputs W dr

l and W dr
r for payoffs of the remote agents dynami-

cally connected through the dynamic routing mechanism. A multiplexer selects
whether the agent to imitate is the same neighbor in the interaction graph or
a remote agent. This multiplexer is controlled by a flag driven by the dynamic
routing unit (is connected), that indicates whether or not the dynamic routing
unit is connected to a remote unit. A second multiplexer randomly selects the
agent to imitate: either the agent connected to the left or the agent connected to
the right. Finally, a comparator is used to decide whether or not the imitation
is done by selecting the value to load in the strategy register (si).

The hardware implementation of an agent with a probabilistic imitation rule
is shown in Fig. 5. It keeps the same inputs and base structure as the determin-
istic agent. The only difference is the part of the circuit that decides whether
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Fig. 5. Probabilistic agent architecture

imitation is performed or not. The decision to imitate is taken by means of a
second LUT that computes the imitation probability given the difference be-
tween the payoff of the self (Wi) and the payoff of the neighbor (Wn), and a
comparator that compares this probability with a 4-bit pseudo-random num-
ber. The implementation is flexible, allowing to parameterize the probabilistic
function and thus to implement different probabilistic imitation rules.

4.2 Ubichip Implementation

We implemented both architectures on the ubichip using the UbiManager design
tool [12]. The UbiManager is a graphical user interface tool that permits editing
ubichip designs in a user-friendly manner. It provides independent views of the
three configuration layers of the ubichip introduced in section 2.

Although architectures with deterministic as well as probabilistic agents have
been implemented, the results shown in the next section consider only determin-
istic agents. The implementation of a single agent with a deterministic imitation
rule requires 9 macrocells. Fig. 6 shows the UbiManager view of the two ubichip
layers used in the agent implementation: the ubicell and the dynamic routing
layers. Fig. 6(a) shows the ubicells and the static routing connectivity. The ubi-
cell array is used for implementing the full agent’s architecture and the static
interaction graph. The imitation graph uses both static and dynamic routing
resources. Links with neighboring agents use static and links with remote agents
use the dynamic routing mechanism. Figure 6(b) shows the dynamic routing
units configured as sources and targets. Routing unit 6 is the only one acting as
source: it can send the agent’s payoff and strategy to any other agent, allowing
the remote agent to imitate it. Routing units 7 and 9 are configured as targets:
they can receive the payoff and the strategy data sent from the sources of re-
mote agents. Agents can thus create, destroy and modify imitation links in a
completely autonomous way.
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(a) Ubicell layer view (b) Dynamic routing layer
view

Fig. 6. UbiManager view of the agent implementation

The process of dynamically creating a routing link is decomposed in two parts:
one carried out on the source and the other on the target. Each dynamic rout-
ing unit configured as source is initialized with a unique ID. Its ID will not
change during the evolution of the graph. On the other hand, dynamic routing
units configured as targets are initialized with an arbitrary ID, which is further
modified in a random way every clock cycle. Simultaneously, these units will
constantly attempt to connect to a source with a certain probability pc. The
computation of this probability is implemented on two ubicells: one acting as a
pseudo-random number generator and the second as a comparator with a con-
stant. The connection attempt is successful if there is no other dynamic routing
process in progress and if the target manages to find a source with the same ID.
In this case, the link is created and the corresponding target does not attempt
to connect to another source. The full process of link creation can take from 10
to about 30 clock cycles, depending on the physical distance between units.

The process of link destruction uses the same principle as the process of
link creation. Targets are constantly attempting to destroy existing remote links
with a certain probability pk. This probability is typically much lower than the
probability of attempting a connection because link destruction only needs a
single clock cycle to be completed. If the probability pk were lower, the effect of
having a dynamic topology would be negligible because of the very low number
of existing links. It must be also noted that once a link is destroyed the target
can retry to connect with other sources.

5 Experimental Setup and Results

As a particular example of the type of experiments we can build and simulate
with our system, we set up the previously described evolutionary graph model
with a population of 64 agents, playing the coordination game given by the
following payoff matrix:
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A B
A 1 0
B 0 3

Notice that the average payoff of a population converging in all-A is 1 while
it is 3 for a population converging in all-B. This makes all-B payoff dominant,
which means that the population is better off in the all-B state than in the all-A
state.

Agents were implemented using the simple deterministic imitation rule. The
imitation network was programmed to have a probability of attempting a dy-
namic connection belonging to the set pc = {0, 1/256, 9/256, 1/4, 1/2}. The first
case (pc = 0) recovers the limiting case in which the imitation network is static
and perfectly coincident with the interaction network. For all the dynamic cases
(i.e. pc > 0), the probability of killing a connection was set to pk = 1/256. The
initial proportion p0

B of agents having the payoff dominant strategy B was set
to different values in the set {0.1, 0.2, 0.3, 0.4, 0.5}. Each experiment (couple of
values pc, p0

B) was replicated 20 times.
Fig. 7 shows the results we obtained in terms of the probability of converg-

ing to all-B and the mean time (simulation steps) to convergence in one of the
two absorbing states (all-A and all-B) as functions of p0

B. Different degrees of
dynamism or disorder of the imitation graphs (measured by pc) are shown with
different line types. From the first plot we can see that, whatever the value
of pc, curves represent monotonically increasing functions, which means that a
high initial proportion of strategy B in the population correlates with a high
probability of having all the population converging to the all-B state. Curves
are also ordered such that, for the same p0

B, the probability of converging to
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Fig. 7. Probability of converging to all-B (left) and mean time to convergence (right)
as functions of the initial proportion of B for pc = 0 (solid), pc = 1/256 (dashed),
pc = 9/256 (dotted), pc = 1/4 (dotdash) and pc = 1/2 (longdash)
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all-B is always higher for lower pc. This indicates that more dynamic, disor-
dered imitation networks are less favorable to converging in the payoff dominant
equilibrium. Regarding the mean time to convergence, it can be seen that more
dynamic, disordered imitation graphs favor a faster convergence in an absorbing
state. Depending on the initial proportions of agents holding strategy A or B,
the time to convergence can be, in average, from 2 to almost 5 times faster for
an imitation graph with pc > 1/256 than for a perfectly static cycle. Thus, more
communication with non-neighbors favors faster consensus at the expense of a
higher probability of convergence in the suboptimal norm.

6 Conclusions

This paper has presented the model and ubichip implementation of an evolu-
tionary graph with dynamic topology. The described implementation uses the
dynamic routing mechanisms of the ubichip in order to create and destroy
graph links in a completely distributed and autonomous way. We focused on
an imitation graph consisting in a ring topology with randomly selected links
being dynamically replaced by connections to randomly selected nodes. How-
ever, the presented implementation permits to easily define any other arbitrary
type of topology (regular or not) by properly setting the dynamic routing in-
terconnections. Moreover, the 2-input nodes described here can be easily up-
graded to nodes with a larger number of inputs through slight architecture
modifications. These modifications consist in the addition of extra input mul-
tiplexers for increasing the inputs of the imitation graph nodes and the in-
clusion of a larger LUT (built with several 4-input LUTs) for enhancing the
interaction graph.

The ubichip has shown to be well adapted for the implementation of such type
of models because of two main aspects: 1) the dynamic routing for addressing
dynamic topology issues and 2) the configuration modes of the ubicell that have
been shown to be well adapted for coarse and fine grained functions. In partic-
ular, the 64-bit LFSR mode provides a very good building block for stochastic
cellular systems.

Regarding the implemented model, the obtained results suggest that for a
simple coordination game, having a dynamic small-world imitation graph re-
duces both the time for reaching consensus and the probability that the whole
population will agree on the optimal norm.
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