
Digital Hardware Architectures of Kohonen’s Self Organizing Feature Maps
with Exponential Neighboring Function

Jorge Peña
Advanced Learning and Research Institute

ALaRI
Università della Svizzera Italiana

USI, Switzerland
jorge.pena@alari.ch

Mauricio Vanegas
Andrés Valencia

Microelectronics Research Group
Universidad Pontificia Bolivariana

Medellı́n, Colombia
mauricio.vanegas@upb.edu.co

Abstract

Kohonen maps are self-organizing neural networks that
categorize input data, capturing its topology and probabil-
ity distribution. Efficient hardware implementations of such
maps require the definition of a certain number of simplifi-
cations to the original algorithm. In particular, multiplica-
tions have to be avoided by means of choices in the distance
metric, the neighborhood function and the set of learning
parameter values. In this paper, one-dimensional and bi-
dimensional Kohonen maps with exponential neighboring
function and Cityblock and Chessboard norms are defined,
and their hardware architecture is presented. VHDL simu-
lations and synthesis on an FPGA of the proposed architec-
tures demonstrate both satisfactory functionality and feasi-
bility.

1 Introduction

Artificial neural networks are parallel computational
models comprised of densely interconnected adaptive
processing units (neurons), able to learn a static map (super-
vised learning) or to classify and categorize the input space
(unsupervised learning) from an input data [3]. A Koho-
nen’s self-organizing feature map (Kohonen’s SOFM) is an
artificial neural network of unsupervised learning that cap-
tures the topology and probability distribution of input data
[5].

Most of the neural networks applications have used sim-
ulations on conventional single-processor machines. The
possibility of parallel processing and short operation times
has encouraged implementations of hardware neural net-
works [6], [8], [10], [12]. Kohonen’s SOFM has not been
the exception, and there are several implementations in ana-
log [7] as well as digital circuits [2] [9]. Generally, digi-

tal implementations have been more successful because of
their lesser vulnerability to noise and their higher scale of
integration when is compared with their analog counter-
parts.

In this paper we proposed digital, hardware-friendly ar-
chitectures for one-dimensional and two-dimensional Ko-
honen maps. The main novelty with respect to existing
approaches is the definition of an exponential neighboring
function, which properly balances flexibility and simplicity.

The paper is organized as follows: section II introduces
original Kohonen’s SOFMs. Section III presents the pro-
posed, simplified algorithm, suitable for hardware imple-
mentation. Section IV describes the digital architectures of
both one-dimensional and two-dimensional maps. Section
V presents the experimental settings, simulations, results
and discussions. Finally, section VI states conclusions and
suggests future work.

2 Kohonen’s Self Organizing Feature Maps

A Kohonen’s self-organizing feature map (SOFM) is an
unsupervised learning neural net that captures the topology
and probability distribution of input data [3], [5]. Its ar-
chitecture consists of an array (a map) of units or neurons
with a fixed position Rj within the map and a variable n-
dimensional weigth Wj , where n is the dimensionality of
input patterns.

The weigths of the neurons are updated whenever a new
input pattern is presented to the net, making them more sim-
ilar to the current pattern. How much the weight of a single
neuron will be updated depends on the proximity of the neu-
ron to the winner unit in the map, identified by:

j∗ = arg min
j

D
(
Wj ,Pk

)
, (1)

where Wj is the weight of the jth unit, Pk is the input

1-4244-0690-0/06/$20.00 ©2006 IEEE.

pattern presented at time step k, and D(x,y) is a distance
function. After a winner take all process has identified the
winner unit, the weight of the jth unit is updated according
to

Wj = Wj + ∆Wj (2)

= Wj + ρ ·Φ (
Rj ,Rj∗) · (Pk − Wj

)
, (3)

where ρ is the learning rate and Φ(Rj ,Rj∗) is a neigh-
boring function that (a) is normally symmetric, (b) returns
values close to one for Rj close to Rj∗ , and (c) is monoton-
ically decreasing with the metric D (Rj ,Rj∗) .

At least two choices for the neighboring function are
commmon in the literature. The first one is a gaussian
neighboring function:

Φ (Rj,Rj∗) = exp
(
−D (Rj,Rj∗)

2σ2

)
. (4)

The second one is what we call in this paper a step neigh-
boring function:

Φ (Rj,Rj∗) =

{
1 if D (Rj,Rj∗) ≤ DN

0 otherwise
. (5)

The width of the neighborhood is controlled by the vari-
ance σ in the gaussian function of Eq. 4 or by the size of
the neighborhood DN in the step function of Eq. 5. In order
to assure convergence of the unsupervised learning process,
both the learning rate and the neighborhood width are de-
creased during the algorithm execution.

3 The Proposed Kohonen’s SOFM

Typical software simulations of Kohonen’s SOFMs use
the euclidean metric to determine the winner unit and the
neighborhood values:

D(x,y) =
√∑

i

(xi − yi)
2 (6)

A hardware implementation of this metric is costly in
terms of silicon area due to the square root and the required
multiplications. Similar problems arise with certain neigh-
boring functions, such as the gaussian of Eq. 4. In order to
achieve an efficient digital design, a number of choices re-
garding the distance metric and the neighborhood function,
and certain simplifications regarding the set of possible val-
ues of learning step ρ, have to be made.

3.1 Distance Metric

Euclidean metric is one particular type of a Minkowski
metric Lm:

Lm(x,y) = m

√∑
i

|xi − yi|m , (7)

with m = 2. Minkowski L1 norm (aka City-block,
Manhattan or Taxicab metric) and Minkowsi L∞ norm (aka
Chessboard metric) are particularly well suited for hardware
implementations, due to the absence of roots and multipli-
cations.

The Cityblock norm is given by

L1(x,y) =
∑

i

|xi − yi| , (8)

and the Chessboard norm is defined by

L∞(x,y) = max
i

|xi − yi| . (9)

The changes in the metric space introduced by using one
of these norms instead of the euclidean norm can be intu-
itively grasped by looking at the way a circle is transformed
under the change of norm. As it is shown in Fig. 1 circles
degenerate into diamonds and squares. In a n-dimensional
space, hyper-spheres degenerate into hyper-diamonds and
hyper-cubes.

O O O

a b c

Figure 1. Graphical (euclidean) representa-
tions of circles (set of points in a plane that
are equidistant from a given point O) un-
der: (a) Euclidean Norm (Circle), (b) City-
block Norm (Diamond), (c) Chessboard Norm
(Square)

The Cityblock norm has normally been used in digital
hardware implementations of Kohonen nets because of the
easiness of adders implementation [9].

3.2 Neighboring Function

The gaussian neighboring function of Eq. 4 allows a dif-
ferent value of Φ (Rj,Rj∗) for each different D (Rj,Rj∗)
in the map. Furthermore, the neighborhood value of neu-
rons at the same distance of the winner unit is decreased
continuously by means of decreases in σ. Nevertheless,

the function is badly suited for hardware implementation
due to the need of dividers and exponential blocks. On
the other hand, the step neighboring function of Eq. 5 is
simple enough to be used in hardware implementations [1],
[9]. The downside of this neighboring function is its lim-
ited flexibility, given the fact that only binary neighborhood
values can be returned.

A middle point between the two choices is proposed in
this paper defining an exponential neighboring function:

Φ (Rj ,Rj∗) =

{
1 if j = j∗(

1
2

)D(Rj,Rj∗)+β
if j �= j∗

, (10)

where D (Rj ,Rj∗) is the distance between the jth neu-
ron and the winner neuron and β is a width parameter that
controls the width of the neighborhood as σ or DN did
in the previously presented neighboring functions (Fig. 2).
This neighboring function returns a different neighborhood
value for each different distance between a losing neuron
and the winning one, but keeps a simplicity that allows
an efficient hardware implementation, as will be discussed
later.

0 1 2 3 4 5
0

0.0625
0.125

0.25

0.5

1

D

Φ

Figure 2. Exponential neighboring function
with β = 0 (dash-dot line), β = 1 (dashed line),
β = 2 (dotted line) and β = 3 (solid line)

3.3 Learning Rate Values

We complete the simplifications needed for our design
restricting the possible values of ρ to the discrete values
given by

ρ =
(

1
2

)α

, α = 0, 1, 2, . . . (11)

The decrease of ρ during learning can be achieved by
incrementing α in a proper way.

3.4 Weight Update Formula

With the proposed simplifications, the update formula
presented in Eq. 2 can be now written again as

∆Wj =

��
1
2

�α �
Pk − Wj

�
if j = j∗�

1
2

�α+D(Rj ,Rj∗)+β �
Pk −Wj

�
if j �= j∗

.(12)

Hence, ∆Wj is simply obtained by multiplying(
Pk − Wj

)
by a power of 1/2, which can be easily done

by shifting right
(
Pk − Wj

)
the proper amount of bits.

4 Hardware Design

In order to check the suitability of the proposed model,
both a one-dimensional and a two-dimensional Kohonen’s
SOFM digital architectures were designed by using a FPGA
Spartan-3 of Xilinx Corp. and simulated by using Modelsim
XE II 5.7g of Mentor Graphics [?]modelsim). To keep the
designs as simple (yet interesting) as possible, we consider
two-dimensional data with 8-bit resolution. Further gener-
alization to n-dimensional data with the desired resolution
should be easy to construct from this work.

The architecture of the one-dimensional map will be
fully described. The architecture of the two-dimensional
map is achieved introducing little changes on one-
dimensional architecture.

4.1 One-dimensional Map

A 10-unit one-dimensional map like the one shown in
Fig. 3 is considered.

1 2 3 10

D

Figure 3. One-dimensional array considered
for the design. Distance d between units is
assumed to be one

The net is designed to work in parallel, as much as pos-
sible, to optimize execution speed. Each neuron is defined
as a building block that processes data in an independently
fashion. The proper behavior of the net, as an aggregation of
these building blocks, is guaranteed by two “global” control
blocks, namely winner take all block and parameter sched-
uler. The neuron architecture and the control blocks will
now be briefly discussed.

4.1.1 The Neuron

A Kohonen’s neuron is composed of a distance calcula-
tion block and a weight update block (Fig. 4). Each neuron
includes four 8-bit and three 4-bit adders, one comparator
(currently, the comparison = 0 is trivial) and two shifters.
Though the shifters could be implemented with sequential
machines (e.g., shift registers), they were actually imple-
mented with combinatorial elements so as to optimize ex-
ecution speed. Notice the absence of multipliers into the
design. Notice also that, in the case of a one-dimensional
map Rj = j and D (Rj ,Rj∗) = |j − j∗|.

Wx Wy

− −

D

ABS ABS

β αj

−

+

+

mux

shift shift

Wx

Wy
+

+

Px − Wx
Py − Wy

Dx = |Px − Wx| Dy = |Py − Wy|

D

j∗P

16

8 8 ABS

∆Wx

∆Wy

D(I, I∗)

4 4

(1) Distance Calculation (2) Weight Update

Px Py

= 0

3 3

Dx > Dy

D = maxi |Pi − Wi|

1 0

+

D = |Px − Wx| + |Py − Wy|

|Px − Wx|

|Px − Wx| |Py − Wy|

|Py − Wy|

(a) Chessboard Norm

(b) Cityblock Norm

Figure 4. Neuron’s architecture

In order to assure a proper synchronization of the digital
neuron, the distance calculation block operates on falling
edges and the weight updating block on rising edges of a
clock signal, as shown in Fig. 5.

Distance calculation

Weight updating

Distance calculation

Weight updating

Figure 5. Neuron’s synchronization

4.1.2 The Winner Take All Block

The winner take all block receives the distance Dj between
each neuron j and input pattern and delivers the index j∗ of
the winner unit. This combinatorial block is composed of
comparators and multiplexors arranged in a cascade config-
uration (Fig. 6).

4.1.3 The Parameter Scheduler

The parameter scheduler updates the learning rate parame-
ter α and the neighborhood width parameter β incrementing
them from an initial value of 0 to a final value determined
beforehand. Basically, this block consists of two counters

D1
D2

1
2

D3
D4

3
4

mux

mux

mux

mux

mux

<

<

<

min (D1, D2)

min (D3, D4)

j∗

Figure 6. Winner take all block. For the sake
of simplicity, a 4-neuron map is assumed

(one for each parameter), registers and a combinatorial logic
to determine the set of time steps at which the parameters
will be incremented.

4.2 Two-dimensional Map

A 25-unit two-dimensional map like the one shown in
Fig. 7 is considered.

1 2 3

6

5

25

Rj∗

Rj

D

D

Figure 7. Two-dimensional array considered
for the design. Distance d between units is
assumed to be one

The two-dimensional map architecture is quite similar
to that of the one-dimensional map. The winner take all
block is essentially the same, but instead of propagating the

j values, it propagates the vertical and horizontal indexes
of the neurons into the map (that is to say, Rj), until the
indexes of the winning neuron (that is to say, Rj∗) have
been identified. In the weight update block of the neuron
(Fig. 4), the distance between the neuron and the winning
neuron must be calculated using the specified norm, and not
just as the absolute value of the diference of the j indexes.

5 Experimental Setup and Results

Both a one-dimensional and a two-dimensional Kohonen
map were described in VHDL, simulated for simple cluster-
ing tasks and then synthesized on FPGAs.

5.1 Behavioral Simulation

5.1.1 One-dimensional, 10-unit, Chessboard norm Ko-
honen Map

A one-dimensional, 10-unit Kohonen map with Chessboard
norm and exponential neighboring function was described
in VHDL and then simulated for a simple clustering task.
The input data consisted of 1000 points randomly generated
in the xy plane between two concentric circles of center 125
and radii 70 and 100. Points between angles of 305 and 325
degrees were not included in the training set.

The net was trained for 18000 iterations (time steps).
The parameters α and β were both initialized at zero, while
the neuron weights were initialized at (125, 125) for each
one. The parameter α was incremented by one at time steps
4000 and 8000, and the parameter β at time steps 2000,
4000 and 6000. The scheduling is better shown in Fig. 8.

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
0

0.5

1

1.5

2

2.5

3

3.5

4

Iterations

V
al

ue

α

β

Figure 8. Parameter Schedule

Assuming a constant winning neuron during the whole
execution (e.g, j∗ = 5), the mentioned scheduling for
the parameters α and β gives rise to the particular pat-
tern of (normalized) weight changes in the map shown in
Fig. 9. Observe the different values of the magnitude of the

changes. This diversity is an advantage of the proposed ex-
ponentional neighborhood function over the traditional step
function.

1 2 3 4 5 6 7 8 910
0

0.5

1
a

1 2 3 4 5 6 7 8 910
0

0.5

1
b

1 2 3 4 5 6 7 8 910
0

0.5

1
c

1 2 3 4 5 6 7 8 910
0

0.5

1
d

1 2 3 4 5 6 7 8 910
0

0.5

1
e

Figure 9. Normalized change in the weights(
∆Wj

Pk−Wj

)
for a constant winning unit (j∗ = 5)

and different phases of the execution: (a) Iter-
ations 0-2000 (α = β = 0), (b) Iterations 2000-
4000 (α = 0, β = 1), (c) Iterations 4000-6000
(α = 1, β = 2), (d) Iterations 6000-8000 (α = 1,
β = 3), (e) Iterations 8000-18000 (α = 2, β = 3)

Fig. 10 shows graphs of the input data and the weight
vectors for different phases of the algorithm. It can be seen
how the units arrange themselves so as to follow the proba-
bility distribution of input vectors. Furthermore, the weight
vectors are finally ordered according to their mutual simi-
larity, so that neurons close to each other in the linear array
correspond to neurons with close weights in the input pat-
tern space, as must be the case of a well trained Kohonen
net.

The histogram of Fig. 11 shows for each neuron the num-
ber of times it became the winner unit of the net. At the
end of the run, each neuron has almost the same chance to
win, which assures that the neurons have covered the in-
put space following the probability distribution of the input
data. Observe how the heights of the bars are close to the
ideal theoretical value of 100 (1000 input patterns over 10
neurons).

A similar network, but with a Cityblock distance calcula-
tion block was also described in VHDL and simulated with
the same input data and the same scheduling for α and β.
The results were very similar to the ones obtained by the
first network (with Chessboard norm).

0 100 200
0

100

200

a
0 100 200

0

100

200

b
0 100 200

0

100

200

c

0 100 200
0

50

100

150

200

250

d
0 100 200

0

50

100

150

200

250

e
0 100 200

0

50

100

150

200

250

f

Figure 10. Input data for a simple clustering
task (small dots) and weight vectors (circles)
in the input space: (a) Iteration 0, (b) Itera-
tion 1000, (c) Iteration 2000, (d) Iteration 3000,
(e) Iteration 12000, and (f) Iteration 18000

0 5 10
0

500

1000

a
0 5 10

0

100

200

b
0 5 10

0

100

200

c

0 5 10
0

50

100

150

200

250

d
0 5 10

0

50

100

150

200

250

e
0 5 10

0

50

100

150

200

250

f

Figure 11. Histogram of winning events:
(a) Iteration 0, (b) Iteration 1000, (c) Iteration
2000, (d) Iteration 3000, (e) Iteration 12000,
(f) Iteration 18000

5.1.2 Two-dimensional, 25-unit, Cityblock norm Ko-
honen Map

A two-dimensional, 25-unit Kohonen map with Cityblock
norm and exponential neighboring function was described
in VHDL and simulated using the Modelsim Simulator XE
II 5.7g of Mentor Graphics. The input data consisted of
1000 points randomly generated in the xy plane in the in-
terior of a circle of center 125 and radii 100. The net was
trained for 18000 iterations.

The scheduling of the parameters α and β was carried
out as it was in the case of the one-dimensional map (Fig. 8).
Fig. 12 shows the normalized change in the neuron weights
according to the followed schedule.

Fig. 13 shows graphs of the input data and the weight
vectors for different phases of the algorithm. Again, the

1 2 3 4 5
1

2
3

4
5

0

0.5

1

a

1 2 3 4 5
1

2
3

4
5

0

0.5

1

b

1 2 3 4 5
1

2
3

4
5

0

0.5

1

c

1 2 3 4 5
1

2
3

4
5

0

0.5

1

d

1 2 3 4 5
1

2
3

4
5

0

0.5

1

e

Figure 12. Normalized change in the weights(
∆Wj

Pk−Wj

)
for a constant winning unit (j∗ = 13)

and different phases of the run: (a) Iterations
0-2000 (α = β = 0), (b) Iterations 2000-4000
(α = 0, β = 1), (c) Iterations 4000-6000 (α = 1,
β = 2), (d) Iterations 6000-8000 (α = 1, β = 3),
(e) Iterations 8000-18000 (α = 2, β = 3)

neurons spread across the input space following the statisti-
cal distribution of the input data, and according to the topo-
logical relations in the map.

The histogram of Fig. 14 shows for each neuron the num-
ber of times it became the winner unit of the net. At the end
of the execution, each neuron has almost the same chance
to win, which again assures that the neurons have covered
the input space following the probability distribution of the
input data. The heights of the bars are close to the ideal the-
oretical value of 40 (1000 input patterns over 25 neurons).

As in the case of the one-dimensional map, a second
network, identical to the one described but with the other
proopsed metric (now the Chessboard metric) was also
coded in VHDL and simulated following the same exper-
imental settings. The results were very close to the ones
obtained with the other norm.

5.2 Synthesis

The four Kohonen maps (the one-dimensional and two-
dimensional maps implemented with both Cityblock and
Chessboard metrics) were synthesized on an FPGA in or-
der to determine the suitability of a real implementation
of the proposed hardware. An FPGA is an array of logic
cells whose functionality and interconnection can be pro-
grammed by a configuration bitstream [13]. We used a
Spartan II xc2s400 from Xilinx Corp. [15].

The results of the synthesis in terms of chip area (slices,
flip flop slices and look up tables) and the speed execution

0 100 200
0

100

200

a
0 100 200

0

100

200

b
0 100 200

0

100

200

c

0 100 200
0

100

200

d
0 100 200

0

100

200

e
0 100 200

0

100

200

f

Figure 13. Input data for a simple clustering
task (small dots) and weight vectors (circles)
in the input space: (a) Iteration 0, (b) Itera-
tion 1000, (c) Iteration 2000, (d) Iteration 3000,
(e) Iteration 12000, and (f) Iteration 18000

(maximum pin delay) are shown in Table 1. It must be said
that no attempt was made to optimize the synthesis. More-
over, the xc2s400 is not even the largest device from the low
cost FPGA family Spartan II. Virtex II family, for instance,
offers up to 20 times more logic resources.

Table 1. Architectures Comparison
One-dimensional Map
Cityblock Chessboard

Slices 1105 1126
F.F. Slices 450 440
LUTs 1628 1691
Max. comb. path delay (ns) 35.24 35.99

Two-dimensional Map
Cityblock Chessboard

Slices 3009 2898
F.F. Slices 1095 1070
LUTs 4525 4450
Max. comb. path delay (ns) 35.04 36.01

Given that the maximum combinational path delay de-
fines the commutation speed of the system and that the
processing time per input vector is one clock cycle, the per-
formance could be extracted from maximum combinatorial
path delay for each system. The performance of the one-
dimenional map with cityblock norm is 28.38 MCUPS, see
table 1.

0 10 20
0

200

400

600

800

1000

a
0 10 20

0

50

100

150

200

250

b
0 10 20

0

50

100

150

200

250

c

0 10 20
0

50

100

150

200

250

d
0 10 20

0

20

40

60

80

100

e
0 10 20

0

20

40

60

80

100

f

Figure 14. Histogram of winning events:
(a) Iteration 0, (b) Iteration 1000, (c) Iteration
2000, (d) Iteration 3000, (e) Iteration 12000,
(f) Iteration 18000

5.3 Discussion

Both Cityblock and Chessboard norms are suitable for
hardware implementation because of the absence of multi-
plications. There was little change in the behavioral results
due to a change in the metric. According to the synthe-
sis results, however, the Cityblock norm seems to outper-
form the Chessboard norm in terms of both speed and area
in the one-dimensional map. In the two-dimensional map,
the Cityblock norm achieves a greater speed but consumes
more area than the Chessboard norm-based architecture.

The proposed SOM architectures are compared with
the SOM described in [4], Hikawa works over an Altera
EP20K400EBC625 FPGA to implement the SOM and he
describes his system by using VHDL. The Hikawa proposed
SOM consists of a 5x5 neurons array with a 4.89 MCUPS
of estimated performance and a maximum clock frequency
of 200.2 MHz. Even though our architecture has less res-
olution (8-bits) compared with 10-bits for Hikawa SOM,
the estimated performance is better than Hikawa SOM, this
means that our architecture is a combinatorial design that
use the clock synchronization just to update the weights.
Likewise the advantage in area consumption of the Hikawa
SOM, while our architecture use 360.000 equivalent gates
to build the system, the Hikawa SOM use just 29.182 equiv-
alent gates.

6 Conclusions and Future Work

Hardware-friendly architectures of both a one-
dimensional and a two-dimensional Kohonen maps

were presented. Though very simple when compared with
the original algorithm, the proposed models succeed in
retaining the main features of the network, allowing data
clustering with topology preservation. In particular, the
change of metric, the restriction in the values of the learn-
ing rates and the definition of an exponential neighboring
function were important to achieve the required simplicity.

The exponential neighboring function allows a greater
flexibility than the step neighboring function, without in-
curring in the costs that the use of a gaussian neighboring
function would involve. On the other hand, from a strictly
behavioral point of view, the choice of whether a Cityblock
or a Chessboard norm seems to be irrelevant. From the point
of view of FPGA synthesis, however, the Cityblock metric
seems to be preferable than the Chessboard metric, except
if a two-dimensional, area sensitive design is taken into ac-
count.

Future work points to the use of the proposed archi-
tecture in real world problems, such image segmentation
and compression and the construction of a perceptual map
for mobile robot navigation. In order to cope with these
problems, we must be able to process data of high dimen-
sionality (only two-dimensional data were considered until
now) and to implement large maps. We have already started
working in the extension of the architecture so it can re-
ceive input data of any dimensionality (e.g, processing each
component in a clock cycle) and in the definition of a local
winner take all mechanism in order to allow a better scala-
bility of the architecture. The idea is to be able to contruct
large maps by the connection of several homogeneous chips
implementing smaller maps.

References

[1] Asanovic, K.: A fast Kohonen net implementation for
Spert-II. IWANN’97, Lanzarote, Canary Islands, Spain,
June 1997.

[2] D. Ghosh , A. P. Shivaprasad: Possibilistic Clustering
in Kohonen Networks for Vector Quantization Institute
of Science, Bangalore, India.

[3] Hassoun, M. H.: Fundamental of artificial neural net-
works. MIT Press / Bradford Book (1995).

[4] Hiroomi Hikawa: FPGA implementation of self orga-
nizing map with digital phase locked loops. Neural Net-
works 18, 2005. pp. 514522.

[5] Kohonen, T.: Self-Organization and Associative Mem-
ory (3rd ed.). Springer-Verlag, Berlin (1989).

[6] Y. Liao: Neural Networks in Hardware: A Survey. De-
partment of Computer Science, University of Califor-
nia, 2001.

[7] D. Macq et. al.: Analog Implementation of a Koho-
nen Map with On-Chip Learning. IEEE Transactions
on Neural Networks, Vol 4, No 3, May 1993.

[8] R. Newcom, J. Lohn: Analog VLSI for Neural Net-
works. MIT Press / Bradford Book, 1995.

[9] Ruping S., Ruckert U., Goser K.: Hardware Design for
Self Organizing Feature Maps with Binary Input Vec-
tors. In: Lecture notes in Computer Science, Springer
Verlag, 1993, pp. 488-493.

[10] T. Schnauer, A. et. al.: Digital Neurohardware. Tech-
nical University of Berlin, Berlin, 1998.

[11] Tamukoh, H., Aso, T., Horio, K. and Yamakawa,
T.: Self-Organizing Map Hardware Accelerator System
and its Application to Realtime Image Enlargement. In:
Neural Networks, 2004. Proceedings. 2004 IEEE Inter-
national Joint Conference on, pp. 2683-2687.

[12] M. Skrbek: Neural Networks-Hardware Implementa-
tion. Department of Computer Science and Engineerig,
FEE CTU, Prague, 2000.

[13] Trimberger, S. M.: Field-Programmable Gate Array
Technology. Kluwer Academic Publishers, 1994.

[14] Mentor Graphics. http://www.model.com

[15] Xilinx Corp. http://www.xilinx.com

