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a b s t r a c t

We consider how group size affects the private provision of a public good with non-refundable binary
contributions. A fixed amount of the good is provided if and only if the number of contributors
reaches an exogenous threshold. The threshold, the group size, and the identical, non-refundable cost
of contributing to the public good are common knowledge. Our focus is on the case in which the
threshold is larger than one, so that teamwork is required to produce the public good. We show that
both expected payoffs and the probability that the public good is obtained in the best symmetric
equilibrium are decreasing in group size. We also characterize the limit outcome when group size
converges to infinity and provide precise conditions under which the expected number of contributors
is decreasing or increasing in group size for sufficiently large groups.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Ever since the publication of Olson’s ‘‘The Logic of Collective
Action’’ (Olson, 1965), group size has been considered important
in determining how successful a group will be in attaining its
common goals. Specifically, Olson suggested that ‘‘[t]he larger a
group is, the farther it will fall short of providing the optimal
supply of any collective good, and the less likely that it will
act to obtain even a minimal amount of such a good. In short,
the larger the group, the less it will further its common inter-
ests’’ (Olson, 1965, p. 36). These suggestions have attracted much
attention in economics and political science but providing firm
theoretical underpinnings has proven challenging (Sandler, 2015).
While such group size effects are well understood for some of
the standard models of collective action (e.g., Chamberlin, 1974;
McGuire, 1974; Andreoni, 1988), for other such models this is not
the case.

In this paper we investigate group size effects for the class of
participation games without refunds introduced in Palfrey and
Rosenthal (1984) to model the private provision of a discrete
public good. In such a threshold game, n group members decide
simultaneously whether to contribute to a public good or not
(to participate or not). All contributors pay a non-refundable
cost. The public good is provided if and only if the number of
contributors reaches an exogenous threshold k, in which case all
group members receive the same benefit from the provision of
the public good. The threshold, the group size, and the identical
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cost of contributing to the public good are known to all players.
We assume that the threshold is larger than one, thereby focusing
on what Myatt and Wallace (2008b) call a ‘‘teamwork dilemma’’
rather than on the volunteer’s dilemma popularized by Diekmann
(1985).

This threshold game is a stark model, which deliberately ab-
stracts from asymmetries and incomplete information about costs
and benefits by assuming that all group members are identi-
cal (Palfrey and Rosenthal, 1984, p. 172). For our purposes this
is an attractive feature as it isolates the effects of changes in
group size from the effects of changes in the composition of
the group, thereby allowing us to focus on the former.1 We
further abstract from the possibility of role identification and
thus restrict attention to symmetric (Nash) equilibria in which all
group members employ the same (mixed) strategy and therefore
obtain the same equilibrium payoff.2 Of course, the assumption
that there is no role identification makes what is already a stark
model even starker. In particular, this assumption is not satisfied
if group members interact repeatedly and therefore can condition

1 See Sandler (2015) for a summary of Olson’s hypotheses on the effects of
group composition and some of the literature investigating such effects.
2 The impossibility of role identification is the standard justification for the

focus on the symmetric strategy profiles of symmetric games in evolutionary
game theory (see Weibull, 1995). The robustness of such symmetric equilibria
against perturbations (which maintain the structure of a threshold public good
game but abandon symmetry) is discussed in Kalandrakis (2009), who obtains
a purification result along the lines of Harsanyi (1973). See Binmore and
Samuelson (2001) for a discussion of the relationship between the purification
of mixed strategy equilibria and their evolutionary stability in an environment
with noisy role identification. For a more heuristic justification for the focus on
the symmetric equilibria in participation games see Dixit and Olson (2000).
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their behavior on actions played in the past. Our approach to
the investigation of group size effects is thus orthogonal to the
one pursued in Myatt and Wallace (2002, 2008a) and Myatt and
Wallace (2008b) who use stochastic stability arguments akin to
the ones developed in Kandori et al. (1993) and Young (1993)
to select among the pure strategy equilibria in repeated thresh-
old games played by myopic players and study the composition
affects arising in asymmetric games together with group size
effects. Due to their focus on pure strategy equilibria, the papers
by Myatt and Wallace find that the selected equilibrium features
a probability of provision that is either zero or one. In contrast,
we model a situation in which the probability of provision can
change more gradually with group size. Over a large range of
parameter values this is indeed what we find.

Generically (more precisely, for all but a countable set of cost
parameters) our model has one or three symmetric equilibria. As
it is always a symmetric equilibrium for no one to contribute,
uniqueness obtains if and only if cost is so high and the group
so large as to imply that the public good cannot be provided in
a symmetric equilibrium. Hence, we face a multiplicity problem
whenever the model allows for a non-trivial symmetric equilib-
rium, that is, an equilibrium in which the public good is provided
with strictly positive probability. We resolve this problem by
focusing on the – uniquely determined – best symmetric equilib-
rium, that is, the one which provides all agents with the highest
expected payoff among the symmetric equilibria. This is also the
symmetric equilibrium with the highest participation probability
and the highest success probability (i.e., the highest probability
that the public good is provided) among the symmetric equilibria
and we thus refer to it as the maximal equilibrium.

We can think of two distinct reasons justifying our focus on
the maximal equilibrium. First, it is of intrinsic economic inter-
est to ask how the best equilibrium outcome that a group can
achieve (under the coordination friction implied by the symmetry
constraint that we presume to be unavoidable) depends on group
size. Second, among the two non-trivial symmetric equilibria the
one we consider is stable under the standard dynamics (e.g., the
replicator dynamics) considered in evolutionary game theory,
whereas the other one is unstable.3 Consequently, whenever
there are multiple symmetric equilibria only the maximal and the
trivial equilibrium (which is always stable) are of relevance. In
an evolutionary analysis of threshold games it is then natural to
focus on the comparative statics of the maximal equilibrium (see
Bach et al., 2006; Archetti and Scheuring, 2011). Nevertheless, it
is of interest to understand how our comparative statics results
depend on our focus on the maximal equilibrium. We therefore
discuss how some of our key results would change if one were to
consider the smaller of the two non-trivial symmetric equilibria
instead.

Section 2 notes some fundamental facts about the symmetric
equilibria of the threshold game we consider. All of these are
immediate from Palfrey and Rosenthal (1984). We then begin our
study of maximal equilibria by observing that (over the range of
group sizes for which a non-trivial symmetric equilibrium exists)
the participation probability in such an equilibrium is strictly
decreasing in group size. We state this well-known result (e.g.,
Offerman, 1997; Hindriks and Pancs, 2002) as Proposition 1 in
Section 3.1.

3 This is immediate from the fact that, as we note in Section 2.2 and
illustrate in Fig. 1, the pivot probability, defined in Eq. (1), is strictly decreasing
(increasing) in the participation probability at the larger (smaller) of the two
non-trivial symmetric equilibria. See McBride (2006) for informal discussion
and Peña et al. (2014), who provide an evolutionary model and characterize
the stability properties of symmetric equilibria for a broad class of symmetric
binary-action games, for a proof.

Our main results (Proposition 2 in Section 3.2 and
Proposition 3 in Section 3.3) show that the expected payoff and
success probability that are induced by the maximal equilibrium
are strictly decreasing in group size until group size reaches a
critical value (which may be infinite) beyond which the public
good cannot be provided. We view Proposition 2 as confirmation
of Olson’s maxim that ‘‘the larger the group, the less it will
further its common interests,’’ whereas Proposition 3 formalizes
his statement that the larger a group is, ‘‘the less likely that it will
act to obtain even a minimal amount of such a good.’’ We com-
plement these results by characterizing the limit as group size
goes to infinity (Proposition 4 in Section 3.4) and by showing that
for sufficiently large groups the expected number of participants
is increasing in group size if and only if the contribution cost is
sufficiently low (Proposition 5 in Section 3.5). We find the latter
result interesting as it delineates the circumstances under which
larger groups not only have a lower success probability but also
incur higher expected aggregate costs than smaller groups.

The questions addressed in our Propositions 3 and 5 have been
previously considered in Hindriks and Pancs (2002).4 In their
Proposition 6 these authors claim that ‘‘the effect of group size
on the probability of provision is indeterminate.’’ In contrast, our
Proposition 3 shows that this effect can be determined and is
negative for the maximal equilibrium we consider. Hindriks and
Pancs (2002, Proposition 7) also consider the case of large group
sizes. While three out of the four claims in that proposition are
(as we prove) correct, their argument yielding these results is not.
The problem is that Hindriks and Pancs (2002) take for granted
that the error introduced by using the Poisson approximation to
the binomial distribution can be ignored when studying com-
parative statics for sufficiently large groups. Our result on the
expected number of contributors – which directly contradicts the
corresponding claim in Proposition 7 from Hindriks and Pancs
(2002) – shows that this is not so.

As we have noted before, the games we consider differ from
the volunteer’s dilemma only in that we consider thresholds
k > 1, whereas the volunteer’s dilemma corresponds to k = 1.
The kind of group size effects we study are much easier to
determine for the volunteer’s dilemma (see, for instance, the
textbook treatment in Dixit et al., 2004, p. 454–458) because its
unique symmetric equilibrium is easy to calculate explicitly. With
the exception of Proposition 2 – in the volunteer’s dilemma the
payoff in the symmetric equilibrium is independent of group size
– all our propositions generalize corresponding results for the
symmetric equilibrium of the volunteer’s dilemma.

We discuss some other related literature that considers sym-
metric equilibria in symmetric participation games to study group
size effects in Section 4, where we also note how our
Propositions 1–3 can be extended to the second class of games
considered in Palfrey and Rosenthal (1984), namely participation
games with refunds.

2. The threshold game

We consider the complete-information participation game
from Palfrey and Rosenthal (1984) with non-refundable contri-
butions. For simplicity, we refer to this as the threshold game.
We first present the model and then collect some facts that are
relevant for the study of its symmetric equilibria. These facts are
immediate from the analysis in Palfrey and Rosenthal (1984), but
for our subsequent analysis it will be convenient to state them
here.

4 The main focus of Hindriks and Pancs (2002) is on the effect of altruism
on the equilibrium provision of the public good. For the teamwork dilemma
(k > 1) we study here, the version of altruism they consider does not
affect the probability that the public good is provided and can therefore be
ignored (Hindriks and Pancs, 2002, Proposition 4).
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2.1. Model

There is a group of n > 2 players. Players simultaneously
decide whether or not to participate in the provision of a pub-
lic good by making a fixed contribution. If k or more group
members participate, the public good is provided. Otherwise, the
public good is not provided. Every player derives a benefit, which
we normalize to one, if the public good is provided and pays
the participation cost c if participating. Payoffs are the differ-
ence between the benefit obtained and the cost incurred. The
participation cost satisfies 0 < c < 1.

For k = 1 this game is the volunteer’s dilemma popularized by
Diekmann (1985) in which one contribution suffices to ensure the
provision of the public good. As the volunteer’s dilemma is well
understood, we assume 1 < k < n throughout the following.5

2.2. Symmetric strategy profiles and equilibria

As explained in Section 1, we focus on the symmetric Nash
equilibria of the threshold game.6

We identify any symmetric strategy profile with the common
participation probability p ∈ [0, 1] and let

πk,n(p) =

(
n − 1
k − 1

)
pk−1(1 − p)n−k (1)

denote the probability that any player is pivotal for the provision
of the public good when such a strategy profile is played: as
the participation of a player will make the difference between
provision and non-provision of the public good if and only if k−1
out of the n−1 other players participate, this probability is given
by the binomial expression on the right side of (1).

As we have assumed 1 < k < n, it is clear that p = 0 is a
symmetric equilibrium whereas p = 1 is not. Further, a symmet-
ric strategy profile with 0 < p < 1 is a symmetric equilibrium if
and only if players are indifferent between participating or not.
This indifference condition requires the probability πk,n(p) that a
player is pivotal to be equal to the participation cost:

πk,n(p) = c. (2)

It is easily verified that the pivot probability πk,n(p) has the
following unimodality properties: (i) it is differentiable in p, (ii) it
satisfies πk,n(0) = πk,n(1) = 0, and (iii) it is strictly increasing
on the interval [0, (k − 1)/(n − 1)] and strictly decreasing on
the interval [(k − 1)/(n − 1), 1] with non-zero derivative on the
interiors of these intervals.7 In particular, (k − 1)/(n − 1) is the
unique maximizer of the pivot probability πk,n(p) in the interval
[0, 1]. Hence,

c̄k,n = πk,n((k − 1)/(n − 1)) ∈ (0, 1) (3)

is the critical value of the participation cost such that for costs
above this level the pivotality condition (2) has no solution and,
thus, no interior symmetric equilibrium exists. If c = c̄k,n holds,
then (k − 1)/(n − 1) is the unique solution to (2). If c < c̄k,n

5 In the case k = n, which corresponds to an assurance problem in the sense
of Sen (1967), it is an equilibrium for all group members to participate, thereby
ensuring the provision of the public good. We exclude this case as it adds
nothing of interest to our analysis in Section 3 but would require an additional
case distinction.
6 The game has a multitude of asymmetric Nash equilibria, including those

in which the players coordinate in such a way that k players contribute and the
remaining n − k players do not contribute. Further asymmetric equilibria are
described in Palfrey and Rosenthal (1984, Section 2).
7 The first two of these properties are immediate from the definition of

πk,n(p) in (2). The remaining properties follow from observing that ln(πk,n(p)) =

(k − 1) ln(p) + (n − k) ln(1 − p) + ln(
(n−1
k−1

)
) is strictly concave in p on (0, 1) and

has its unique critical point at p = (k − 1)/(n − 1).

Fig. 1. Symmetric equilibria (circles) and the pivot probability (solid curve), here
illustrated for k = 2, n = 4, and c = 0.2. The pivot probability πk,c (p) is
unimodal and has a unique maximum at (k − 1)/(n − 1) with corresponding
pivot probability c̄k,n ≈ 0.44. For c < c̄k,n there are three symmetric equilibria
with the maximal equilibrium (see Section 2.3), denoted by pk,c (n), satisfying
pk,c (n) > (k − 1)/(n − 1).

holds, the unimodality properties of πk,n(p) imply that (2) has
one solution to the left and one solution to the right of (k − 1)/
(n − 1). This gives the following characterization result for the
number and location of symmetric strategy equilibria, which
specializes the characterization results in Palfrey and Rosenthal
(1984, Section 2) to the symmetric equilibria under consideration
here. Fig. 1 illustrates.

Lemma 1. For 1 < k < n the number and location of symmetric
equilibria depends on c as follows:

1. If c > c̄k,n, then p = 0 is the unique symmetric equilibrium.
2. If c = c̄k,n, then there are two symmetric equilibria, namely

p = 0 and p = (k − 1)/(n − 1).
3. If c < c̄k,n, then there are three symmetric equilibria, namely

p = 0, the unique solution to (2) in the interval (0, (k −

1)/(n − 1)), and the unique solution to (2) in the interval
((k − 1)/(n − 1), 1).

We will refer to the symmetric equilibrium with p = 0 as
the trivial equilibrium and to symmetric equilibria with p > 0 as
non-trivial equilibria. The following result shows how the critical
cost level c̄k,n from Eq. (3), which determines whether non-trivial
equilibria exist, depends on group size. The straightforward proof
is in Appendix A.1.

Lemma 2. For any k > 1, the sequence (c̄k,n)n>k is strictly
decreasing with limit

c̄∗

k = g(k − 1, k − 1) > 0, (4)

where

g(x, λ) =
λxe−λ

x!
, x = 0, 1, . . . , (5)

denotes the probability mass function of a Poisson distribution with
parameter λ > 0.

To simplify the exposition, we exclude the uninteresting case
in which the trivial equilibrium is the unique equilibrium for
all group sizes and the non-generic case in which there exists
a unique non-trivial equilibrium for some group size. That is,
throughout the following we impose
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Assumption 1. For any k > 1, the cost parameter c satisfies

c ∈ Ck = {c ∈ (0, c̄k,k+1) : c ̸= c̄k,n, ∀n > k}. (6)

It is clear from Lemmas 1 and 2 that under Assumption 1 there
exists n̄k,c ≥ k + 1 such that two non-trivial equilibria exist if
and only if n ≤ n̄k,c (where n̄k,c is infinite if and only if c ≤ c̄∗

k )
and the trivial equilibrium is the unique symmetric equilibrium
otherwise. We refer to n̄k,c as the critical group size.

Remark 1. Throughout our analysis we consider changes in
group size for fixed threshold k. A natural alternative, briefly
considered in Palfrey and Rosenthal (1984), is to suppose that
the threshold is proportional to group size. For this case Palfrey
and Rosenthal (1984, p. 178) argue that ‘‘the only equilibria which
are supported by positive contribution costs for all n are the pure
strategy equilibria’’, that is, the counterpart to our critical group
size n̄k,c is always finite. More generally, Palfrey and Rosenthal
(1984) suggest (on the same page) that ‘‘mixed strategy equi-
libria seem to ‘disappear’ in large populations.’’ In our model
this is captured by the observation (see Proposition 4) that the
participation probability in the sequence of maximal symmetric
equilibria (and thus, a fortiori, for all sequences of symmetric
equilibria) converges to zero as group size diverges to infinity. As
Proposition 4 also shows, this does not imply that the equilibrium
payoff and the success probability converge to zero.

2.3. Success probability, expected payoff, and the maximal equilib-
rium

Let

Πk,n(p) =

n∑
ℓ=k

(
n
ℓ

)
pℓ(1 − p)n−ℓ (7)

be the success probability, that is, the probability that the public
good is provided in the symmetric strategy profile p. If p is a
symmetric equilibrium, then it is a best response for any group
member to choose not to participate, so that the expected payoff
of every group member satisfies

Πk,n(p) − p · c = Πk,n−1(p). (8)

As Πk,n−1(p) and Πk,n(p) are both strictly increasing in p
(Lehmann and Romano, 2005, Chapter 3.4) it follows that among
the symmetric equilibria for given parameter values (k, c, n), the
one with the highest participation probability p also induces the
highest equilibrium payoff and the highest success probability.
We thus refer to this equilibrium as the maximal equilibrium. We
denote it by pk,c(n) and let

φk,c(n) =Πk,n(pk,c(n)), (9)

uk,c(n) =Πk,n−1(pk,c(n)) (10)

µk,c(n) =n · pk,c(n), (11)

denote the success probability, expected payoff, and expected
number of contributors at this maximal equilibrium.

By definition of the critical group size n̄k,c we have

n ≤ n̄k,c ⇒ pk,c(n) > 0, φk,c(n) > 0, uk,c(n) > 0, µk,c(n) > 0,
(12)

n > n̄k,c ⇒ pk,c(n) = φk,c(n) = uk,c(n) = µk,c(n) = 0. (13)

Our interest in the following is to characterize, for given (k, c), the
comparative statics of pk,c(n), φk,c(n), and uk,c(n) over the range
of group sizes in (12). For the case n̄k,c = ∞ we also investigate
the limit as group size converges to infinity and characterize the
monotonicity properties of µk,c(n) for large groups.

Fig. 2. Illustration of Propositions 1–3 for k = 6 and c = 0.2. The participation
probability pk,c (n), the equilibrium payoff uk,c (n), and the success probability
φk,c (n) are all strictly positive and strictly decreasing up to the critical group
size n̄k,c = 22. For larger groups pk,c (n), uk,c (n), and φk,c (n) are all zero.

3. Results

In Sections 3.1–3.3 we establish that over the relevant range
of group sizes the participation probability pk,c(n), the expected
payoff uk,c(n), and the success probability φk,c(n) are all strictly
decreasing in group size n. Fig. 2 illustrates (for an example with
finite n̄k,c). By far the deepest of these results is Proposition 2 in
Section 3.2, which establishes the monotonicity of the expected
payoff. The result that the success probability φk,c(n) is strictly
decreasing in n (Proposition 3 in Section 3.3) is obtained as an
immediate consequence of Proposition 2 and the familiar obser-
vation, here restated as Proposition 1 in Section 3.1, that the
participation probability is strictly decreasing in n.

We record limit results for n → ∞ in Section 3.4, showing that
the success probabilities, expected payoffs and expected number
of contributors induced by a sequence of maximal equilibria
converge to their counterparts in a game in which group size is
Poisson distributed as in Makris (2009). Finally, building on these
limit results, Section 3.5 identifies the precise conditions under
which the expected number of contributors is decreasing, resp.
increasing in group size for sufficiently large n.

3.1. The effect of group size on the participation probability

The maximal participation probability that can be sustained
in a symmetric equilibrium is strictly decreasing in group size for
n ≤ n̄k,c (with (13) ensuring that it drops to zero thereafter):

Proposition 1. Let n < n̄k,c . Then pk,c(n + 1) < pk,c(n) holds.

This result has been noted before by Offerman (1997, Theorem
2.3) and Hindriks and Pancs (2002, Proposition 6(i)). We provide
a proof in Appendix A.2 to make the paper self-contained and
to prepare the ground for the proof of Proposition 2. Fig. 3 illus-
trates graphically how Proposition 1 results from the relationship
between the pivot probabilities πk,n(p) and πk,n+1(p). Before pro-
ceeding, we note that, as suggested by Fig. 3, Proposition 1 would
also hold if we were to consider the comparative statics of the
smaller of the two non-trivial equilibria.8

8 Indeed, as we have shown in previous work (viz., Peña and Nöldeke,
2018), for a large class of symmetric participation games it is the case that all
interior symmetric equilibria feature participation probabilities that are strictly
decreasing in group size.
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Fig. 3. Illustration of Proposition 1 for k = 3, n = 4, and c = 0.2. The pivot
probability πk,n+1(p) lies below πk,n(p) to the right of (k − 1)/n, implying that
the maximal equilibria for consecutive group sizes satisfy pk,c (n + 1) < pk,c (n).

3.2. The effect of group size on the equilibrium payoff

As we have noted in Section 2.3, in any symmetric equilibrium
the payoff of every group member is the same as if they were to
choose non-participation while the other group members follow
the equilibrium strategy. Hence, the payoff in the maximal equi-
librium is, as stated in Eq. (10), given by uk,c(n) = Πk,n−1(pk,c(n)).
It is then clear from Proposition 1 that there are two coun-
tervailing effects of an increase in group size on uk,c(n). First,
increasing group size for a given participation probability p raises
the probability that at least k of the n − 1 other group members
provide and therefore has a positive effect on the equilibrium
payoff. Second, we know from Proposition 1 that an increase in
group size does not leave the participation probability unchanged
but decreases it. For given group size this causes the probability
that at least k of the other group members contribute to fall,
and therefore has a negative effect on the equilibrium payoff. The
following result shows that the latter effect dominates:

Proposition 2. Let n < n̄k,c . Then uk,c(n + 1) < uk,c(n) holds.

The proof of Proposition 2 is in Appendix A.3. It proceeds in
two steps. The first step shows that the equality πk,n+1(pk,c(n +

1)) = πk,n(pk,c(n)), which holds by the pivotality condition (2),
implies that for the maximal equilibrium the probability that
exactly k out of n − 1 group members participate is decreasing
in group size, that is,

πk+1,n+1(pk,c(n + 1)) < πk+1,n(pk,c(n)). (14)

The second step infers from inequality (14) that the probability
that at most k − 1 out of n − 1 group members participate is
strictly increasing in group size, so that the complementary prob-
ability that at least k group members participate, Πk,n−1(pk,c(n)),
is strictly decreasing in group size. Both steps of the proof rely on
a unimodality property of the ratio of binomial probabilities with
two different sample sizes from Klenke and Mattner (2010).

It is essential for the result in Proposition 2 that we consider
the maximal equilibria for group sizes n and n + 1. Indeed,
arguments entirely analogous to the ones proving Proposition 2
show that considering the smaller of the two solutions to the
pivotality condition for both group sizes reverses the inequality
in (14) and thereby also reverses the result: the payoff in these
equilibria is strictly increasing in group size.

3.3. The effect of group size on the success probability

Using (8) and (9), we can rewrite (10) as

φk,c(n) = uk,c(n) + pk,c(n) · c, (15)

thereby decomposing the effect of group size on the success
probability induced by the maximal equilibrium into two effects,
namely the effect on the equilibrium payoff and the effect on
the participation probability. From Propositions 1 and 2 both of
these effects point in the same direction. Hence, the following
proposition, is now immediate:

Proposition 3. Let n < n̄k,c . Then φk,c(n + 1) < φk,c(n) holds.

The result in Proposition 3 is in sharp contrast to the corre-
sponding claim in Proposition 6 of Hindriks and Pancs (2002),
who assert that ‘‘the effect of group size on the probability of
provision is indeterminate.’’ There are two sources for this di-
vergence in results. First, Hindriks and Pancs (2002) actually do
not show that the effect is indeterminate but simply observe that
there are two countervailing effects of an increase in group size
on the success probability (probability of provision). In contrast,
our Proposition 3 establishes that for the maximal equilibrium the
negative effect of an increase in group size on the participation
probability dominates the positive effect of having more potential
contributors. Second, we restrict attention to maximal equilibria,
whereas Hindriks and Pancs (2002) do not impose an explicit
equilibrium selection rule. This matters because, as we have
noted in the last paragraphs of Sections 3.1 and 3.2, the result
from Proposition 1 is unchanged but the result from Proposition 2
is reversed when considering the smaller of the two non-trivial
equilibria, so that the argument proving Proposition 3 is no longer
applicable. Indeed, as we have verified numerically, depending on
parameter values the success probability induced by the smaller
of the two non-trivial equilibria can either decrease or increase
when group size is changed, so that for this equilibrium the claim
in Proposition 6 of Hindriks and Pancs (2002) is correct.

3.4. The Poisson limit

From the monotonicity results in Sections 3.1–3.3 the limits

p∗

k,c = lim
n→∞

pk,c(n), φ∗

k,c = lim
n→∞

φk,c(n), u∗

k,c = lim
n→∞

uk,c(n)

are all well defined. As we will see below, the same is true for the
limit of the expected number of contributors,

µ∗

k,c = lim
n→∞

µk,c(n).

In the following results, we consider the case in which the
maximal equilibrium is non-trivial for all group sizes, that is, we
suppose c ≤ c̄∗

k (see Lemma 2).9
Define

λk,c(n) = (n − 1) · pk,c(n) (16)

for all n > k. From the perspective of each player, λk,c(n) is the
expected number of other group members that will contribute in
the maximal equilibrium pk,c(n). Recall that we have used g(x, λ)
to denote the probability mass function of a Poisson distribution
with expected value λ (see Eq. (5)). Appendix A.4 proves:

Lemma 3. Let c ≤ c̄∗

k . Then λ∗

k,c = limn→∞ λk,c(n) is given by
the unique solution to the condition g(k − 1, λ) = c that satisfies
λ ≥ k − 1.

9 Otherwise, the critical group size n̄k,c is finite and it is immediate from (13)
that all of the limits defined above are equal to zero.
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Fig. 4. Illustration of Lemma 3 and Proposition 4 for k = 2 and c = 0.2. The
limit of the expected number of (other) contributors λ∗

k,c = µ∗

k,c is given by
the larger of the two solutions to the pivotality condition g(k − 1, λ) = c.
Both the equilibrium payoff u∗

k,c and the success probability φ∗

k,c converge to
the probability G(k, µ∗

k,c ) that there are at least k contributors given that the
number of contributors follows a Poisson distribution with expected value µ∗

k,c .

The condition g(k − 1, λ) = c in the statement of Lemma 3
is the natural counterpart to the pivotality condition (2) when
the number of other contributors follows a Poisson distribution
with expected value λ. For c < c̄∗

k , this condition has two
solutions. Lemma 3 indicates that the limit value λ∗

k,c of the
expected number of other contributors is given by the larger of
those two solutions. This is analogous to Lemma 1 identifying
non-trivial maximal equilibria as the larger of the two solutions
to the pivotality condition (2). This solution satisfies λ∗

k,c ≥ k− 1
because (from Lemma 1) the inequality λk,c(n) > k − 1 holds
for all group sizes. Fig. 4 illustrates these considerations and the
following Proposition 4.

From the convergence of λk,c(n) = (n − 1) · pk,c(n) to the
finite limit λ∗

k,c it is immediate that p∗

k,c = 0 holds. This in turn
implies that the expected number of contributors converges to
the same limit as λk,c(n), that is, µ∗

k,c = λ∗

k,c holds. To prove
the following result it remains to establish that both the success
probability and the equilibrium payoff converge to the probability
that there are at least k contributors given that the number of
contributors follows a Poisson distribution with expected value
µ∗

k,c . This probability is G(k, µ∗

k,c), where

G(x, λ) =

∑
y≥x

g(y, λ), x = 0, 1, . . . . (17)

Proposition 4. Let c ≤ c̄∗

k . Then,

p∗

k,c = 0, µ∗

k,c = λ∗

k,c and φ∗

k,c = u∗

k,c = G(k, µ∗

k,c) > 0. (18)

Proof. Using a generalization of the classical Poisson approx-
imation (see, for instance, Billingsley, 1995, Theorem 23.2) we
have that (i) λk,c(n) → µ∗

k,c implies Πk,n−1(pk,c(n)) → G(k, µ∗

k,c)
and (ii) µk,c(n) → µ∗

k,c implies Πk,n(pk,c(n)) → G(k, µ∗

k,c). Using
(7) and the second equality in (10), this proves the final two
equalities in (18). Further, as µ∗

k,c > 0 is implied by the equality
µ∗

k,c = λ∗

k,c and Lemma 3, we have that, as asserted in (18), the
inequality G(k, µ∗

k,c) > 0 holds. □

We note that the limit values for the expected number of
contributors µ∗

k,c and the success probability φ∗

k,c identified in
Proposition 4 coincide with the values one would obtain for the
maximal equilibrium in a Poisson game (Myerson, 1998) in which

group size is commonly known to be a Poisson random variable
with mean ν ≥ µ∗

k,c , but the actual realization of the group size is
unknown to individuals. This holds for any µ satisfying the above
inequality, that is, in the Poisson game the expected number
of contributors and the success probability are independent of
expected group size as long as the expected group size is large
enough. These observations are in line with the convergence re-
sults fromMakris (2009), who considers a model for the provision
of a binary public good in which, in contrast to the scenario we
consider, there is cost-sharing between participants and unused
contributions are returned.

It is of interest to ask under which circumstances the ex-
pected number of contributors µk,c(n) exceeds the number of
contributors k that are required for the provision of the pub-
lic good (Gradstein and Nitzan, 1990, Section 4). Lemma 3 and
Proposition 4 provide an answer to this question for large group
sizes. As the probability mass function g(k, λ) of the Poisson
distribution is decreasing in its parameter λ for λ ≥ k (see the
proof of Lemma 3) the following holds: for small cost (0 < c <
g(k − 1, k)) the expected number of contributors exceeds k for
sufficiently large groups, whereas for intermediate cost (g(k −

1, k) < c ≤ g(k − 1, k − 1)) the reverse is true.

3.5. The effect of group size on the expected number of contributors
in large groups

As we have discussed for the equilibrium payoff uk,c(n) (and
is also the case for the success probability φk,c(n)), an increase
in group size has two countervailing effects on the expected
number of contributors µk,c(n) = n · pk,c(n): on one hand,
for a given participation probability an increase in n causes the
expected number of contributors to increase; on the other hand,
an increase in n causes pk,c(n) to fall (Proposition 1). In light of
Propositions 2 and 3 it is natural to conjecture that the second
of these effects dominates (i.e., that the expected number of
contributors is strictly decreasing in group size). However, the
following proposition shows that this is not necessarily the case.
Specifically, Proposition 5 shows that for sufficiently large groups
the comparative statics of the expected number of contributors
are determined by how the participation cost c compares to a
critical cost level, given by g(k − 1, k +

√
k): for costs below this

level the expected number of contributors is strictly increasing
in group size, whereas for costs above this level (but low enough
for non-trivial equilibria to exist for all group-sizes) the expected
number of contributors is strictly decreasing in group size.

Proposition 5.

(i) Suppose c < g(k− 1, k+
√
k) or, equivalently, µ∗

k,c > k+
√
k

holds. Then there exists N such that µk,c(n+1) > µk,c(n) holds
for all n > N.

(ii) Suppose g(k−1, k+
√
k) < c < g(k−1, k−1) or, equivalently,

k − 1 < µ∗

k,c < k +
√
k holds. Then there exists N such that

µk,c(n + 1) < µk,c(n) holds for all n > N.

The proof of Proposition 5 is in Appendix A.5. It uses
Proposition 4 only to ensure the equivalences noted in the state-
ment of Proposition 5. In particular, the proof does not use
Proposition 4 to approximate the binomial probabilities appear-
ing in the pivotality condition (2) by their Poisson counterparts.
Instead, our proof relies on inequalities for the probability mass
function of the binomial distribution established in Anderson and
Samuels (1967). This is essential, as the arguments presented in
the proof of Proposition 7(iii) in Hindriks and Pancs (2002) show
that using the standard Poisson approximation to the pivotal-
ity condition for finite n leads to the mistaken conclusion that
for sufficiently large n the expected number of contributors is
decreasing in group size irrespectively of the participation cost.
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4. Discussion

We have studied the comparative statics of the maximal sym-
metric equilibrium in the class of participation games without
refunds introduced in Palfrey and Rosenthal (1984). We have
found that for all thresholds k > 1 the probability of participation,
the expected payoff, and the probability that the public good is
provided in this equilibrium are strictly decreasing in group size
if the participation cost c is no larger than the critical value c̄∗

k
identified in Eq. (4). Otherwise, these results hold for all group
sizes no larger than a critical group size n̄k with the participation
probability, the equilibrium payoff, and the probability that the
public good is provided all being zero for group sizes exceeding
n̄k. In line with the suggestion from Palfrey and Rosenthal (1984,
p. 178) that ‘‘mixed strategy equilibria ‘disappear’ as the number
of players grows large’’ we have found that the probability of
participation converges to zero as group size goes to infinity.
However, for cost c ≤ c̄∗

k this does not imply that the equilibrium
payoff and the probability of provision converge to zero. Rather,
both of these converge to the same strictly positive limit that has
a simple characterization in terms of the Poisson distribution. We
have also signed the group size effect on the expected number
of contributors for large groups, showing, in particular, that this
effect is positive for sufficiently small cost. Overall, these results
provide an almost complete picture of the effects of group size
on the maximal symmetric equilibria in the class of games that
we have studied.10

In their pioneering work, Palfrey and Rosenthal (1984) also
consider a second version of their participation game in which
contributions are refunded when the number of contributors fails
to reach the necessary threshold. As shown in Palfrey and Rosen-
thal (1984) this participation game with refunds has a unique
non-trivial symmetric equilibrium qk,c(n). For all c ∈ (0, 1) and
n > k this equilibrium satisfies 0 < qk,c(n) < 1 and the indiffer-
ence condition

πk,n(qk,c(n)) = c · Πk−1,n−1(qk,c(n)). (19)

Despite the significant structural difference between the partic-
ipation games without and with refunds, our arguments can be
adapted to show that, for c ≤ c̄∗

k , counterparts to Propositions 1–
3 hold for the participation game with refunds. We show this in
Appendix A.6.11

Makris (2009) considers symmetric equilibria in a variant of
the participation game with refunds in which excessive contri-
butions are also refunded when the threshold is passed: when
there are ℓ > k participants the public good is provided, but
each participant only pays the cost ck/ℓ. While his main focus is
on games in which there is both uncertainty about preferences
and group size, he also briefly considers (in his Section 3) the
counterpart to the symmetric complete information model that
we have studied here and suggests in passing ‘‘that for sufficiently
large group-size the expected number of contributors and the
probability of provision decreases with group-size’’ (Makris, 2009,

10 The one missing piece is a result characterizing the group size effect on
the expected number of contributors for all (rather than only for large) group
sizes. We conjecture that there are only three possibilities, namely that the
expected number of contributors is (i) decreasing throughout, (ii) increasing
throughout, or (iii) unimodal. Proving this conjecture is a non-trivial task as it
requires to extend the analysis from Anderson and Samuels (1967) to obtain a
complete characterization of the comparative statics of the binomial probability
mass function when the sample size and the success probability are changed in
such a way that the expected number of successes stays constant.
11 The role of the condition c ≤ c̄∗

k in this proof is to ensure that qk,c (n)
exceeds the mode (k−1)/(n−1) of the pivot probability πk,n(p) for all n. Whether
counterparts to Propositions 2 and 3 also hold for the model with refunds when
the participation cost exceeds c̄∗

k is an open question.

p. 296) in the unique non-trivial symmetric equilibrium of such a
model. In our view, it would be interesting to verify these claims
and check whether arguments similar to the ones we have given
here can be used to extend them to all group sizes.

Much of the recent literature on participation games has fo-
cused on the (more realistic) case, first considered in Palfrey and
Rosenthal (1988), in which there is incomplete information about
costs and/or benefits. The comparative statics in such models are
quite different from the ones in the complete information model
that we have considered here. For instance, Johnson (2002) con-
siders group-size effects in a version of the volunteer’s dilemma
featuring private information both about idiosyncratic costs and
benefits and finds that – contrary to what is true in the vol-
unteer’s dilemma with complete information and our model –
the effect of group size on the success probability is ambiguous
whereas equilibrium payoffs are strictly increasing in group size.
Palfrey and Rosenthal (1988) characterize (see their Table 2) the
comparative statics of the participation probability with respect
to group size when agents have private information about their
idiosyncratic altruistic ‘‘warm glow’’ benefit from contributing
to the public good, with Goeree and Holt (2005, Proposition 4
and Footnote 20) then obtaining conditions under which this
characterization implies that the participation probability first
falls and then rises with an increase in group size. In light of
such results, there is little hope of generalizing our arguments
to participation games with incomplete information.
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Appendix

A.1. Proof of Lemma 2

Using the definition in (1), straightforward algebra shows that
the equation πk,n(p) = πk,n+1(p) has a unique solution in the
interval (0, 1) given by p̂ = (k − 1)/n. From the unimodality
properties of the pivot probability πk,n(p) noted in Section 2.2,
(k− 1)/(n− 1) is the unique maximizer of πk,n(p) over p ∈ (0, 1),
so that πk,n((k−1)/(n−1)) > πk,n((k−1)/n) holds. Thus, we have
πk,n((k − 1)/(n − 1)) > πk,n+1((k − 1)/n). Recalling the definition
of c̄k,n in (3) we thus have c̄k,n > c̄k,n+1.

From Eqs. (1) and (3) we have, upon setting m = n − 1,

c̄∗

k = lim
m→∞

(
m

k − 1

)(
k − 1
m

)k−1 (
1 −

k − 1
m

)m−(k−1)

,

so that (4) follows from the classical Poisson approximation to
the binomial distribution.

A.2. Proof of Proposition 1

Let P = ((k − 1)/(n − 1), 1) and Q = [(k − 1)/n, 1). As
πk,n((k−1)/(n−1)) > πk,n+1((k−1)/n) holds (Lemma 2), it follows
from the unimodality properties of the pivot probabilities that for
all q ∈ Q there exists a unique h(q) ∈ P such that

πk,n(h(q)) = πk,n+1(q)

https://github.com/jorgeapenas/olsonconjecture
https://github.com/jorgeapenas/olsonconjecture
https://github.com/jorgeapenas/olsonconjecture
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holds. Further, the function h : Q → P thus defined is contin-
uous (in fact, differentiable, as πk,n+1(q) is differentiable on Q
and the inverse of the restriction of πk,n(p) to the interval P is
differentiable by the inverse function theorem). Observing that
h((k − 1)/n) > (k − 1)/(n − 1) > (k − 1)/n holds, where the first
inequality is from h((k− 1)/n) ∈ P , and that πk,n(p) and πk,n+1(p)
have no intersection in the interval P (see the proof of Lemma 2),
we obtain h(q) > q for all q ∈ Q .

The condition n < n̄k,c in the statement of the proposition
implies n+1 ≤ n̄k,c and therefore that non-trivial equilibria exist
for group sizes n and n + 1. Thus, Lemma 1 yields pk,c(n) ∈ P ,
pk,c(n + 1) ∈ Q , and πk,n(pk,c(n)) = πk,n+1(pk,c(n + 1)) = c > 0,
so that pk,c(n) = h(pk,c(n + 1)) holds. Consequently, pk,c(n) >
pk,c(n+1) follows from the inequality h(q) > q established in the
preceding paragraph.

A.3. Proof of Proposition 2

As in the proof of Proposition 1, let P = ((k − 1)/(n − 1), 1),
Q = [(k − 1)/n, 1), and let h : Q → P denote the continuous
function satisfying

πk,n(h(q)) = πk,n+1(q) (20)

for all q ∈ Q . Following reasoning analogous to the one in the
proof of Proposition 1 and using (10) to rewrite the equilibrium
payoffs it suffices to show

Πk,n−1(h(q)) > Πk,n(q) ∀q ∈ Q . (21)

Towards this end, let us define

ℓ(x, q) =
πx,n(h(q))
πx,n+1(q)

(22)

for q ∈ Q and x = 1, . . . , n. From (20) we have ℓ(k, q) = 1 for
all q ∈ Q . In the following we first argue that this implies ℓ(k +

1, q) > 1 and then, in a second step, show that this inequality
implies (21). The key observation underlying these arguments is
due to Klenke and Mattner (2010), who (in the proof of their
Lemma 2.4) observe that, for x = 1, . . . , n − 1,

r(x, q) =
ℓ(x + 1, q)

ℓ(x, q)
=

(
n − x

n + 1 − x

)(
h(q)

1 − h(q)

)(
1 − q
q

)
(23)

is decreasing in x. The second equality in (23) follows from (1)
and (22).
Step 1: We show ℓ(k+1, q) > 1 for all q ∈ Q . Because ℓ(k, q) = 1,
this is equivalent to showing that r(k, q) > 1 holds for all q ∈ Q .

It will be useful to begin by establishing the inequality r(k, q) >
1 for the lower endpoint of the interval Q , that is, q = (k − 1)/n.
Substituting this value for q into Eq. (23) yields

r(k, (k − 1)/n) =

(
n − k
k − 1

)(
h((k − 1)/n)

1 − h((k − 1)/n)

)
> 1,

where the inequality is implied by h((k− 1)/n) > (k− 1)/(n− 1).
Now suppose there exists q ∈ ((k−1)/n, 1) satisfying r(k, q) ≤ 1.
Because h : Q → P is continuous in q, so is r(k, q). By the
intermediate value theorem for continuous functions there then
exists q̂ ∈ Q satisfying r(k, q̂) = 1. As r(x, q̂) is decreasing in x, this
implies r(x, q̂) > 1 for all x satisfying 1 ≤ x < k. Consequently,
ℓ(1, q̂) < ℓ(2, q̂) < · · · < ℓ(k, q̂) = 1 holds, where the equality
is from (20) and (22). Similarly, we have r(x, q̂) < 1 for all x
satisfying k < x ≤ n − 1, which implies ℓ(n, q̂) < ℓ(n − 1, q̂) <
· · · < ℓ(k + 1, q̂) = 1, where the equality is from ℓ(k, q̂) = 1 and
r(k, q̂) = 1. Hence, we have ℓ(x, q̂) ≤ 1 for x = 1, . . . , n with
strict inequality for x ̸∈ {k, k + 1}. Consequently, from (22) (and
the assumption k > 1) we have

n∑
x=1

πx,n(h(q̂)) <

n∑
x=1

πx,n+1(q̂). (24)

But this is impossible: from (1) the left side of (24) is one, whereas
the right side is smaller than one. Hence, no q̂ satisfying r(k, q̂) =

1 exists and we have ℓ(k + 1, q) > 1 for all q ∈ Q .
Step 2: From ℓ(k + 1, q) > 1 and ℓ(k, q) = 1 we have r(k, q) > 1.
As r(x, q) is decreasing in x, this implies r(x, q) > 1 for all x
satisfying 1 ≤ x ≤ k. Consequently, ℓ(1, q) < ℓ(2, q) < · · · <

ℓ(k, q) = 1 holds. Because we have assumed k > 1 this implies
k∑

x=1

πx,n(h(q)) <

k∑
x=1

πx,n+1(q).

From (1) and (7) this is equivalent to (21).

A.4. Proof of Lemma 3

Upon taking logarithms in (5) it is easily verified that g(k −

1, λ) is differentiable and decreasing in λ on [k − 1, ∞) with
limλ→∞ g(k − 1, λ) = 0. Hence, as asserted in the statement of
the lemma, the condition g(k − 1, λ) = c has a unique solution
satisfying λ ≥ k − 1 that we denote by λ∗

k,c . It remains to show
that λk,c(n) converges to this value as n → ∞.

As pk,c(n) satisfies the pivotality condition (2) for all n, we have

πk,n(λk,c(n)/(n − 1)) = c, ∀n > k.

From Lemma 1 we also have the inequality λk,c(n) > k− 1 for all
n > k.

Let ϵ > 0 and λ = λ∗

k,c + ϵ. Then g(k − 1, λ) < c holds and,
by the Poisson approximation to the binomial distribution, there
exists N1 such that πk,n(λ/(n− 1)) < c holds for all n > N1. From
the unimodality properties of the pivot probability πk,n(p), we
then have that λk,c(n) < λ holds for all n > N1. Let λ = λ∗

k,c − ϵ.
If λ > k− 1 holds, then, using an analogous argument to the one
we used when considering λ, there exists N2 such that λk,c(n) > λ

holds for all n > N2. If λ ≤ k − 1 holds, then define N2 = k. We
then again have that λk,c(n) > λ holds for all n > N2. Letting N =

max{N1,N2} we have established that for all ϵ > 0 there exists N
such that for all n > N the inequalities λ∗

k,c−ϵ < λk,c(n) < λ∗

k,c+ϵ

are satisfied. Consequently, λk,c(n) converges to λ∗

k,c .

A.5. Proof of Proposition 5

Proof. (i) Suppose c < g(k−1, k+
√
k) holds. From Proposition 4

and Lemma 3 we have that µ∗

k,c = limn→∞ n · pk,c(n) satisfies
g(k−1, µ∗

k,c) = c and µ∗

k,c ≥ k−1. Because g(k−1, λ) is decreasing
in λ for λ ≥ k − 1 (see the beginning of the proof of Lemma 3)
this implies µ∗

k,c > k +
√
k. An analogous argument shows that

µ∗

k,c > k +
√
k implies c < g(k − 1, k +

√
k).

Suppose µ∗

k,c > k+
√
k holds. As µk,c(n) = n ·pk,c(n) converges

to µ∗

k,c there thus exists N such that µk,c(n) > k +
√
k holds for

all n > N . Consider any such n. The first part of Theorem 3.1
in Anderson and Samuels (1967) then implies

πk+1,n+1(pk,c(n))
πk+1,n+2(pk,c(n) · n/(n + 1))

< 1. (25)

Simple algebra shows

πk+1,n+1(p)
πk,n(p)

=
np
k

and
πk,n+1(q)

πk+1,n+2(q)
=

k
q(n + 1)

.

Thus,
πk+1,n+1(pk,c(n))

πk+1,n+2(n · pk,c(n)/(n + 1))
=

πk,n(pk,c(n))
πk,n+1(n · pk,c(n)/(n + 1))

.

Hence, (25) implies

πk,n(pk,c(n)) < πk,n+1(n · pk,c(n)/(n + 1)).
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Because πk,n(pk,c(n)) = πk,n+1(pk,c(n + 1)) = c holds (as both
pk,c(n) and pk,c(n + 1) are non-trivial), we thus have

πk,n+1(pk,c(n + 1)) < πk,n+1(n · pk,c(n)/(n + 1)). (26)

To establish the first part of the proposition, it remains to show
that this inequality implies

pk,c(n + 1) > n · pk,c(n)/(n + 1) ⇔ µk,c(n + 1) > µk,c(n). (27)

The pivot probability πk,n(p) is strictly decreasing in p in [(k −

1)/n, 1] and Lemma 1 implies that pk,c(n + 1) ≥ (k − 1)/n holds.
Thus, a violation of the first inequality in (27) contradicts the
inequality in (26), so that the desired conclusion follows.
(ii) The equivalence g(k − 1, k +

√
k) < c < g(k − 1, k − 1) ⇔

k − 1 < µ∗

k,c < k +
√
k follows as the equivalence in part (i).

Suppose k − 1 < µ∗

k,c < k +
√
k holds. Fix λ and λ such that

k − 1 < λ < µ∗

k,c < λ < k +
√
k

holds. Because µk,c(n) = n · pk,c(n) converges to µ∗

k,c there exists
N1 > k +

√
k such that λ < µk,c(n) < λ holds for all n > N1.

Consider any such n. The function

R(λ, n) =
πk+1,n+1(λ/n)

πk+1,n+2(λ/(n + 1))

is unimodal in λ in [k − 1, k +
√
k].12 Thus, the inequality

πk+1,n+1(pk,c(n))
πk+1,n+2(n · pk,c(n)/(n + 1))

≥ min{R(λ, n), R(λ, n)}

holds. Observing that k −
√
k ≤ k − 1 holds, the second part

of Theorem 3.1 in Anderson and Samuels (1967) implies that
there exists N2 ≥ N1 such that for all n > N2 the inequality
min{R(λ, n), R(λ, n)} > 1 is satisfied. Hence, for all n > N2 we
have

πk+1,n+1(pk,c(n))
πk+1,n+2(n · pk,c(n)/(n + 1))

> 1. (28)

Arguments analogous to the ones showing that (25) implies part
(i) of the proposition show that (28) implies pk,c(n + 1) < n ·

pk,c(n)/(n + 1), proving part (ii) of the proposition. □

A.6. Participation games with refunds

Suppose c ≤ c̄∗

k , so that n̄k,c = ∞ and Propositions 1–3 hold
for all 1 < k < n. The following arguments show that corre-
sponding results then hold for the unique non-trivial symmetric
equilibrium of the participation game with refunds.

We first show that the participation probability is strictly
decreasing in group size, that is, that qk,c(n + 1) < qk,c(n) holds
for all n > k. From Proposition 6 in Palfrey and Rosenthal (1984)
we have qk,c(n) > pk,c(n) for all n. Thus, using the same notation
as in the proof of Proposition 1 for the sets P and Q , we have
qk,c(n) ∈ P and qk,c(n+ 1) ∈ Q (because the equilibria pk,c(n) and
pk,c(n + 1) are both non-trivial by the assumption c ≤ c̄∗

k ). Now
suppose that qk,c(n + 1) ≥ qk,c(n) holds. As πk,n+1(p) < πk,n(p)
holds on P and πk,n+1(p) is strictly decreasing on this domain,
qk,c(n+1) ≥ qk,c(n) ∈ P implies πk,n+1(qk,c(n+1)) < πk,n(qk,c(n)).

12 To verify this claim calculate

R(λ, n) =
(n + 1 − k)
(n + 1)

(n + 1)n+1

nn

(n − λ)n−k

(n + 1 − λ)n+1−k

and observe that
∂ ln(R(λ, n))

∂λ
=

n + 1 − k
n + 1 − λ

−
n − k
n − λ

is positive for λ ∈ [k − 1, k) and negative for λ ∈ (k, k +
√
k].

We also have that qk,c(n+1) ≥ qk,c(n) > 0 implies Πk−1,n(qk,c(n+

1)) > Πk−1,n−1(qk,c(n)) as Πk−1,n−1(p) is increasing both in n and
p. We thus obtain that the left side of (19) strictly decreases when
the group size is increased from n to n + 1 whereas the right
side of (19) strictly increases, contradicting the hypothesis that
qk,c(n+1) is the symmetric equilibrium for group size n+1. Hence,
qk,c(n + 1) < qk,c(n) must hold.

Second, we show that the equilibrium payoff is strictly de-
creasing in group size. Denoting the equilibrium payoff in the
participation game without refunds as a function of group size
by vk,c(n) we have (by the indifference condition) vk,c(n) =

Πk,n−1(qk,c(n)) for all n > k. Hence, our task is to show that
Πk,n(qk,c(n + 1)) < Πk,n−1(qk,c(n)) holds for all n > k. Towards
this end, observe that (19) can be rewritten as

(1 − c) · πk,n(qk,c(n)) = c · Πk,n−1(qk,c(n)). (29)

Now suppose that Πk,n(qk,c(n + 1)) ≥ Πk,n−1(qk,c(n)) holds. From
(29) we must then have πk,n+1(qk,c(n + 1)) ≥ πk,n(qk,c(n)). As
πk,n+1(q) is continuous and decreasing with limit πk,n+1(1) = 0
on Q , there then exists q̃ ≥ qk,c(n + 1) that satisfies πk,n+1(q̃) =

πk,n(qk,c(n)). Because qk,c(n) ∈ P and q̃ ∈ Q hold, the same
argument as in the proof of Proposition 2 implies Πk,n(q̃) <

Πk,n−1(qk,c(n)). But as Πk,n(q) is increasing in q, this contra-
dicts the hypothesis Πk,n(qk,c(n + 1)) ≥ Πk,n−1(qk,c(n)). Hence,
Πk,n(qk,c(n+1)) < Πk,n−1(qk,c(n)) must hold, proving that vk,c(n+

1) < vk,c(n) holds.
Third, we conclude the argument by establishing that the

success probability is strictly decreasing in n, too.
As we are considering a non-trivial equilibrium with qk,c(n) >

0, choosing to contribute with probability one is a best response
if all other agents contribute with probability qk,c(n). A player
choosing this strategy obtains the public good and pays the
contribution cost if and only if at least k − 1 out of the other
n − 1 group members contribute. Hence, the equilibrium payoff
satisfies

vk,c(n) = (1 − c) · Πk−1,n−1(qk,c(n)). (30)

The equilibrium payoff is also given by the probability that the
public good is provided if all n players contribute with probability
qk,c(n) minus the expected cost of contribution when following
this strategy. As each player contributes with probability qk,c(n)
and in this case has to pay the cost c if and only if at least k − 1
of the remaining n − 1 players contribute, this means that the
equilibrium payoff can also be written as

vk,c(n) = Πk,n(qk,c(n)) − qk,c(n) · Πk−1,n−1(qk,c(n)) · c. (31)

Substituting from (30) into (31) to eliminate Πk−1,n−1(qk,c(n))
from the latter equation, we obtain

Πk,n(qk,c(n)) =

[
1 +

qk,c(n) · c
1 − c

]
vk,c(n).

Because both qk,c(n) and vk,c(n) are strictly decreasing in n, it
follows that the success probability Πk,n(qk,c(n)) is strictly de-
creasing in n.
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