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a b s t r a c t

Extending previous work on unweighted networks, we present here a systematic
numerical investigation of standard evolutionary games on weighted networks. In the
absence of any reliable model for generating weighted social networks, we attribute
weights to links in a few ways supported by empirical data ranging from totally
uncorrelated to weighted bipartite networks. The results of the extensive simulation work
on standard complex network models show that, except in a case that does not seem to
be common in social networks, taking the tie strength into account does not change in
a radical manner the long-run steady-state behavior of the studied games. Besides model
networks, we also included a real-life case drawn from a coauthorship network. In this case
also, taking the weights into account only changes the results slightly with respect to the
raw unweighted graph, although to drawmore reliable conclusions on real social networks
many more cases should be studied as these weighted networks become available.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The importance of the population structure on evolutionary game theory has been fully realized in recent years. In fact,
the customary infinite well-mixed populations used in the theory have the appeal of simplicity and lend themselves to exact
mathematical analysis [1] but network science has clearly shown that fully mixed populations are only an approximation,
sometimes a bad one, to the actual interactions among agents. These social interactions can instead be more precisely
represented as graphs in which nodes represent agents and links stand for their relationships [2]. In the last few years
evolutionary games on networks have been thoroughly investigated and many results are available. Most of them come
from numerical simulations, but there are also some theoretical results, mainly on degree-homogeneous graphs. It would
be impossible to cite all the works in this fast-developing field but good recent reviews can be found in [3–5].

The bulk of the work on evolutionary games on complex networks so far has dealt with unweighted graphs, so that the
intensity of the relationships has not been taken into account in general. This is right as a first step and allows one to ignore
the interplay between topology and structure, but a further step toward more realism consists in including the strength of
a relationship. Indeed, there are only few works in which the role of link weights in evolutionary game dynamics have been
considered [6,7]. However, such investigations have been rather limited in character and there is not, as far as we know, any
systematic treatment dealing with this potentially important aspect of games on networks. In the present work we present
such a study of the behavior of paradigmatic evolutionary games on weighted networks.
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Table 1
Generic payoff bi-matrix for the two-person, two-strategies
symmetric games discussed in the text.

C D

C (R, R) (S, T )
D (T , S) (P, P)

Attributingweights to links in technological networks such as computer networks, power grids, or airline route networks,
is relatively easy. For example, data packets for a computer network, and number of flights, passengers, or seats for
airlines are quantities that make sense and can be defined and measured easily and without ambiguity. Contrastingly,
attributing weights to relationships in social networks is not a simple matter because the relationship is often multi-
faceted and relies on psychological and sociological features that are difficult to define and measure, such as friendship,
empathy, and common beliefs. Nevertheless, there are some social networks for which at least a proxy for the intensity
of a relationship can be defined and accurately measured. This is the case, for instance, for e-mail networks, phone calls
networks, and coauthorship networks among others [8–10]. Other examples come from the field of animal networks in
which animals can bemarked or recognized in someway and repeated co-occurrences of animals adds to theweight of their
relationship [11].

For the sake of definiteness, we shall assume in the following that suitable weights can be attributed to the network
edges and, since we shall explore several possible ways of performing the assignment, our work will be primarily based on
standard model networks in order to try to unravel the interplay and the correlation between the purely topological aspect
of the relationships and their intensity for the chosen games. Nevertheless, to connect our work to real-life nets, we shall
also consider a known collaboration network. Moreover, to avoid having to deal with further degrees of freedom, we use
fixed networks, i.e. networks in which neither the number of nodes nor the number of links is subject to change over time.
Likewise, there is no rewiring of existing links among the network nodes. Co-evolutionary models can be more realistic
(see e.g. [12–14,5]) but in this work we are especially interested in singling out the effect of link weights in static networks,
which is a satisfactory approximation if the network dynamics is slowly fluctuating. The present investigation is based on
extensive numerical simulations.

The article is organized as follows. In the next section we briefly introduce the main games used and their parameter
space, as well as the evolutionary rules for strategy update. In Section 3 we provide justifications for a number of ways of
attributing weights to network links and we numerically study evolutionary games behavior using typical model networks
and several link weight distributions. Finally, we discuss the results and give our conclusions in Section 4.

2. Evolutionary games on networks

2.1. The standard games

We study the four standard two-person, two-strategy, symmetric games, namely the Prisoner’s Dilemma (PD), the
Snowdrift Game (SG), the Stag Hunt (SH), and the Harmony game (HG). We briefly summarize the main features of these
games here for completeness; more detailed accounts can be found elsewhere [1,15]. The games have the generic payoff
bi-matrix of Table 1. In this matrix, R stands for the reward the two players receive if they both cooperate (C), P is the
punishment for bilateral defection (D), and T is the temptation, i.e. the payoff that a player receives if she defects while the
other cooperates. In this case, the cooperator gets the sucker’s payoff S. In order to study the standard parameter space, we
restrict the payoff values in the following way: R = 1, P = 0, −1 < S < 1, and 0 < T < 2. In the resulting TS-plane, each
game corresponds to a different quadrant depending on the ordering of the payoffs.

For the PD, the payoff values are ordered such that T > R > P > S. Defection is always the best rational individual
choice, so that (D,D) is the unique Nash Equilibrium (NE) and also the only Evolutionarily Stable Strategy (ESS) [1]. Mutual
cooperation would be socially preferable but C is strongly dominated by D.

In the Snowdrift game, the order of P and S is reversed, yielding T > R > S > P . Thus, in the SD when both players
defect they each get the lowest payoff. (C,D) and (D, C) are NE of the game in pure strategies. There is a third equilibrium
in mixed strategies where strategy D is played with probability p, and strategy C with probability 1 − p, where p depends
on the actual payoff values. The only ESS of the game is the mixed strategy, while the two pure NE are not ESSs [1]. Players
have a strong incentive to play D, which is harmful for both parties if the outcome produced happens to be (D,D).

In the Stag Hunt, the ordering is R > T > P > S, which means that mutual cooperation (C, C) is the best outcome,
Pareto-superior, and a NE. The second NE, where both players defect is less efficient but also less risky. The dilemma is
represented by the fact that the socially preferable coordinated equilibrium (C, C) might be missed for ‘‘fear’’ that the other
player will play D instead. The third mixed-strategy NE in the game is evolutionary unstable and not an ESS [1].

Finally, in the Harmony game R > S > P > T . In this case C strongly dominates D and the trivial unique NE is (C, C).
The HG is non-conflicting by definition and does not cause any dilemma: we include it just to complete the quadrants of the
parameter space.
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2.2. Population structure and dynamics

We represent the population of players by an undirected weighted graph G(V , E), where the set of vertices V represents
the individuals, and the set of weighted edges E represents their symmetric interactions. The weight of an edge e ∈ E will
be denoted by we or by wij, by using the edge end points i and j and the weights we are normalized in [0, 1]. The population
size N is the cardinality of V . A neighbor of an agent i is any other agent j adjacent to i. The set of neighbors of i is denoted
by Vi. The cardinality of this set is the degree ki of vertex i ∈ V ; p(k) denotes the degree distribution of the graph, i.e. the
probability that an arbitrarily chosen node has degree k. The average degree of the network is given by ⟨k⟩ =

∑
k k p(k). For

theweighted aspects of the network p(we) represents the linkweight distribution, and p(s)denotes the strengthdistribution,
where the strength s(i) of a vertex i is defined as s(i) =

∑
j∈Vi

wij, i.e. the sum of the weights of the links incident in i [16].
For the evolutionary dynamics, wemust next define the decision rule by which individuals update their strategy and the

timing of the dynamical process. There are several possible strategy update rules that can be used [3,4]. The results are not
very qualitatively dependent on the specific rule type, although there are quantitative differences between them [4]. For the
sake of simplicity, we use two rules that are sufficiently different so as to represent typical diverse behavior: imitation of the
best and local replicator dynamics. These updating rules will be explained below.

Let σi ∈ {C,D} be the current strategy of player i and let us callM the payoff matrix of the game. The quantity

Πi(t) =

−
j∈Vi

σi(t) M σ T
j (t)

is the accumulated payoff collected by player i at time step t . Since we work with weighted networks, the pairwise payoffs
Mij = σi M σ T

j aremultiplied by theweightswij of the corresponding links before computing the accumulated payoff earned
by i. This takes into account the relative importance of the relationship as represented by its weight.

Another possibility is to use the normalized weight wij as a probability of interaction of agents i and j, i.e. i and j will
play with probability wij as in Ref. [7]. Here we use the former choice but some numerical experiments have shown that the
results do not differ qualitatively by using the latter instead.

In imitation of the best, the strategy σi(t) of individual i at time step t will be

σi(t) = σj(t − 1),

where

j ∈ {Vi ∪ i} s.t. Πj = max{Πk(t − 1)}, ∀k ∈ {Vi ∪ i}.

That is, individual iwill adopt the strategy of the player with the highest payoff among its neighbors including itself. If there
is a tie, the winner individual is chosen uniformly at random, but otherwise the rule is deterministic.

The local replicator dynamics rule is stochastic and it is consistent with the original mean-field evolutionary game theory
equations [17]. Here it has been slightlymodified to take into account theweighted nature of the network. Player i’s strategy
σi is updated by drawing another player j from the neighborhood Vi with a probability proportional to wij, and replacing σi
by σj with probability

p(σi → σj) = (Πj − Πi)/K ,

if Πj > Πi, and keeping the same strategy if Πj ≤ Πi. K = max(si, sj)[max(1, T ) − min(0, S)], with si and sj being the
strengths of nodes i and j respectively, ensures proper normalization of the probability p(σi → σj).

Finally, if we define C(t) = (σ1(t), . . . , σN(t)) as being the configuration or state of the population at time t , then the
simulation advances synchronously according to the symbolic global evolution rule F :

C(t + 1) = F(C(t)).

In other words, all the individuals in the network play the game once with all their respective neighbors, accumulate
their payoffs, and decide their strategy for the next time step according to the above rules. The evolution could also be fully
or partially asynchronous. In partially asynchronous dynamics a fraction f of the population is simultaneously updated in
each time step [14]. In fully asynchronous update an individual is chosen at random, she plays the game once with her
neighbors, and she updates her strategy accordingly. Then the payoff of all individuals is set to zero and another individual
is drawn uniformly at random in the whole population at the next time step. In several studies, following an enquiry by
Huberman and Glance [18], it has been shown that asynchronous evolution doesn’t change the main qualitative aspects of
the dynamics of games on networks (for example, see Refs. [17,4,14]). Thus, here we use synchronous dynamics.

2.3. Simulation parameters

All simulations were performed for a networked population size ofN = 2000 andmean degree ⟨k⟩ = 8 unless otherwise
stated. The initial density of cooperators is 0.5, uniformly distributed over the vertices of the networks. Given that our main
goal here is to compareweighted and unweighted networks with respect to evolutionary games, in the interest of simplicity
wedonot explore unbalanced initial conditions. Each value in the phase space reported in the following figures is the average
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of 50 independent runs. Each run has been performed on a fresh realization of the corresponding graph. To detect steady
states1 of the dynamics we first let the system evolve for a transient period of 5000×N time steps. After a quasi-equilibrium
state is reached past the transient, averages are calculated during 500 × N additional time steps. A steady state has always
been reached in all simulations performedwithin the prescribed amount of time, for most of themwell before the limit. The
state space explored is defined by R = 1, P = 0, −1 < S < 1, and 0 < T < 2 and the T and S axes have been sampled at
intervals of 0.1.

3. Games on weighted networks

In the last decade the structure of hundreds of medium to large networks have been investigated thanks to readily
available electronic data [2]. However, the large majority of these graphs were of the unweighted type. The reasons are
that, as hinted at in the Introduction, apart from technological or economic networks such as trade networks, in the realm
of social nets it is often difficult to associate sensible weights to an edge representing some kind of relationship between
two agents. However, there are some published studies that can be used as a starting point to estimate suitable forms for
the weights, given that some very different hypothesis have been voiced in the literature. One extreme position, called the
dyadic hypothesis [9] is to argue that the weight of a particular tie does not depend on the network structure around the two
concerned agents but only on the nature of their relationship. In this view, tie strengths are completely uncorrelated with
topological features such as node degree and clustering coefficient. In two detailed studies of large social networks, the first
being a scientific coauthorship network [19] and the second a mobile call [8] network, it has been empirically shown that
this is not the case. Although the non-correlation hypothesis does not seem to be a likely one in social networks, it is still
useful as a benchmark: a kind of null model against which to test some more realistic assumptions. In our first simulation
model we thus assume that weights are attributed to links without correlation with the topology. In order to get rid of
topological effects and to observe the effect of the link strength only on the dynamics, we first model the games on regular
random graphs in which each node has the same degree but links are otherwise randomly distributed. Random graphs
are the closest network approximation to a mean-field well mixed population, ideally represented by a complete network
and, in the limit of very large population sizes, the standard results of evolutionary game theory should hold [1,4] at least
approximately.

Fig. 1 depicts the average cooperation levels on regular random graphs of degree k = 8 and N = 2000 nodes at steady
state, when theweights are assigned at randomaccording to a uniformdistribution in [0, 1] distributed uniformly at random
among the available links.

The images on the left correspond to imitate the best update rule while on the right they correspond to local replicator
dynamics. Unsurprisingly, the results are almost identical to those obtained on the same family of graphs but using
unweighted networks (bottom row images). This result is also fully coherent with the cooperation levels found in Ref. [4]
for unweighted Erdös–Rényi random graphs with the same ⟨k⟩. Clearly, when weights are assigned uniformly at random
there is an implicit averaging over the whole set of edges when calculating payoffs and the inclusion of weights does not
not change the qualitative results. In passing, we note the remarkable level of cooperation reached in the SH game which
imitates the best strategy update rule, a phenomenon already observed in Ref. [4].

To investigate whether degree inhomogeneity changes the picture, we have also simulated the same games on
Barabási–Albert (BA) scale-free graphs of the same size and ⟨k⟩ = 8. The results, shown in Fig. 2 (top row) are again very
similar to the unweighted cases (bottom row), and there is full agreement with the results of Roca et al. [4]. One is thus led
to the conclusion that, when weights are distributed uniformly at random among the edges there is almost no difference
with the unweighted case for both update rules. This in turn shows that when weights are totally uncorrelated with the
topological aspects of the network, such as degree or clustering coefficient, their influence is negligible.

Indeed, even when the weight distribution is a long-tailed one such as a power-law p(we) ∝ w
−γ
e , the results are very

similar, as shown in Fig. 3, where the value of the exponent γ is 2. The reasons seem intuitively clear: since there are few
strong links, hubs with many connections will get only a few of those, which will change the picture very little with respect
to the unweighted case. Likewise, the few strong links that will exist among poorly connected vertices, because of the low
degree of the end points, will not be able to influence a sizable portion of the network. Only statistical outliers could change
this significantly but, over many graph realizations, the fluctuations will be smoothed and only mean values will matter.

The inescapable conclusion is the following: if one assumes the dyadic hypothesis for setting the edge weights, owing
to system averaging, there is almost no effect on cooperation. But we have already remarked that empirical research to
date indicates that edge weights and topological properties are related. To take weight–degree correlations into account
one possible approach is to assume that wij ∝ (kikj)α for some small exponent α. Such an empirical correlation has indeed
been detected for the world-wide airport network [19] with α ≈ 1.5, and similar behavior, perhaps with different values
of the exponent, seems to be likely in all kind of transportation networks in which there are fluxes that must respect local
conservation [9]. However, social networks are different in this respect, they are much more local and there aren’t any

1 True equilibrium states in the sense of dynamical systems stability are not guaranteed to be reached by the simulated dynamics. For this reason we
prefer to use the terms steady states or quasi-equilibrium states which are states that have little or no fluctuation over an extended period of time.
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Fig. 1. Average degree of cooperation at steady state for regular random graphs with ⟨k⟩ = 8. Left column: imitation of the best. Right column: replicator
dynamics. Top row: link weights uniformly and independently distributed. Bottom row: unweighted regular random graphs. Network sizes N = 2000.
Each grid point value is the average over 50 independent runs. Blue means more defection.

obvious quantities that could constrain the relationship between link weights and number of contacts. For example, both
[19,8,9] found that ⟨wij⟩ is uncorrelated with ki × kj for mobile phone call nets as well as for a coauthorship network.

In Ref. [6] Du et al. have tried to account for the effect of link weights on the PD on Barabási–Albert scale-free graphs with
the Fermi function [3]:

p(σi → σj) =
1

1 + exp(−β(Πj − Πi))
,

as a strategy update rulewithβ = 10. This setting gives results very similar to our replicator rule in unweighted networks, as
it has been clearly shown in Ref. [4]. The payoff was rescaled using the corresponding linkweight as explained in Section 2.2.
They assumed the above degree product form for the weights, studying the evolutionary behavior of the PD for several
negative and positive values of the exponent α. However, their simulations only covered a tiny part of the game phase space
due to their use of the so-called ‘‘reduced’’ PD game in which R = 1 and S = P = 0, which makes T the only free parameter
and corresponds to the straight line at the frontier between the PD and the SD games. Although, as remarked above, this
form of degree–weight correlation is not supported by empirical data in social networks, for the sake of completeness we
performed simulations for the whole four games phase space. The results for replicator dynamics are shown in Fig. 4 where
we report the average cooperation values for values of α between −3 and 3 starting with α = −3 in the leftmost top row
picture; α then increases from left to right and takes positive values starting from the second picture in the bottom row.
The last top row image and the first bottom raw image correspond to the case α = 0, i.e. the unweighted networks. From
these images it appears that cooperation seems to increase around α = 1 but it is difficult to really see it. In order to better
quantify the effect, in Fig. 5 we plot the average cooperation values for each game as a function of α. Now it becomes clear
that, taking the average over the whole game phase space, in the three non-trivial games there is a ‘‘plateau’’ of cooperation
between α = 0.5 and α = 1 approximately (of course the HG case is only shown for completeness). For values lower than 0
and beyond 1.5 the trend is toward a lower, almost constant level of cooperation. This is confirmed by the values obtained
for α = −10 and α = 10 which are shown for reference as small traits on each curve on the left and the right of the figure
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Fig. 2. Average degree of cooperation at steady state for BA scale-free networks with ⟨k⟩ = 8. Left images: imitation of the best. Right images: replicator
dynamics. Top row: link weights drawn from a uniform distribution. Bottom row: unweighted BA scale-free networks. Network sizes N = 2000. Each grid
point value is the average over 50 independent runs. Blue stands for more defection.

respectively. Du et al. [6] found a big increase in cooperation for large negative values of α and for α close to −1 while they
found a deepminimum of cooperation around α = −1.5. This, however, only applies to the region of the space represented
by the segment at the frontier between the PD and SD games. Our results show that this non-monotonic behavior is not
observed when the entire phase space is taken into account.

3.1. Weighted networks from bipartite graphs

Wehave seen above that there can be a generally positive influence on cooperative strategies inweighted networkswhen
the link weights are proportional to the products of the endpoints degrees with an exponent between 0.5 and 1. However,
the few available empirical studies exclude the presence of such a correlation in typical social networks [19,8,9]. But many
social networks are of the affiliation type, meaning the participation of a set of actors in a set of groups or interest centers.
Each set is represented by the vertices of a graph and there is a link X − G between two elements of the sets when an actor
X participates to group G. In this model there can be no links between vertices belonging to the same set. Such a situation
can be described by using bipartite graphs. Although social networks such as friendship or mutual communication nets are
not of this kind, there are many significant examples of bipartite graphs in society such as scientist coauthoring an article,
directors belonging to the same board, people that have bought the same book in Amazon, actors starring in the samemovie,
and so on [2].

A graph G(V , E) in which V = {v1, . . . , vN} is the set of vertices or nodes, and E = {e1, . . . , eM} is the set of edges or
links, is said to be bipartite when the vertices can be partitioned into two disjoint sets V1 ∪ V2, V1 ∩ V2 = ∅, such that there
are no edges e = {u, v} between vertices belonging to different sets:

{{u, v} : u ∈ V1, v ∈ V2}, ∀e ∈ E.
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Fig. 3. Average degree of cooperation at steady state when link weights are distributed according to an inverse power-law with an exponent of 2. Left
column: imitate the best. Right column: replicator dynamics. Top row: regular random graphs; bottom row: BA scale-free graphs. N = 2000, averages
over 50 runs.

Fig. 4. Average cooperation at steady state using replicator dynamics on BA networks of size N = 2000 and ⟨k⟩ = 8 as a function of the parameter α (see
text). Top row images, from left to right α = −3, −2, −1, −0.5, 0. Bottom row, from left to right α = 0, 0.5, 1, 2, 3. The initial density of cooperators is
0.5 in all cases. Averages over 50 runs.

The incidence matrix B of a bipartite network with, say, l groups andm actors is an l×m rectangular matrix such that the
generic matrix element Bij is 1 if actor j belongs to group i and 0 otherwise [2].
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Fig. 5. The points show, for each game, the average amount of cooperation at steady state in the whole game’s phase space as a function of α. Lines are just
a visual guide. In the legend, PD stands for Prisoner’s Dilemma; HD stands for the Hawk-Dove or Snowdrift game; ST stands for Stag Hunt, and H designates
the Harmony game.

From the bipartite graph, it is an easymatter to obtain two derived graphswhich are called projections. One can construct
a graph in which two actors are connected if they adhere to the same group, or we can also build the projection in which
two groups are connected if they share a common actor. The two projections capture the essence of the relationships we
are looking for but they do not account for the ‘‘weight’’ of a relationship. Indeed, it is sensible to say that it is not the same
whether two people sit together on a single board or on several, or whether an article has only two coauthors or ten. In some
sense, their degree of interaction should be higher in the former case. To account for this, the projection can be weighted;
for example, for the actors projection, an edge, i.e. a pair of connected actors, will have a weight equal to the number of
common groups. The weighted projection can be obtained from the incidence matrix B as follows [2]:

P = BTB, where Pij =

l−
k=1

BT
ikBkj (1)

where BT is the transpose of B, and l is the number of groups. The elements Pij of the m × m matrix P are the weights, i.e.
the number of common groups shared by the actors i and j, whereas the diagonal elements Pii are the number of groups to
which actor i belongs. This provides us with a ‘‘natural’’ way of attributing ways to the links of the projection graph and thus
can in principle be used to gauge the behavior of the standard games on the resulting weighted networks.

Among several existing models of bipartite graphs, we choose the team assembly model by Guimerà et al. [20]. In this
growingmodel, teams are formed sequentially taking their members both from a set of newcomers and a set of incumbents.
Teams correspond to top nodes, newcomers to new bottom nodes and incumbents to existing bottom nodes. The model
starts at time zero with an endless pool of newcomers. Once they are selected for a team, newcomers become incumbents.
Each time step t , a new team is formed and added to the network. The team consists of m agents. With a probability p, the
agent is drawn from the pool of incumbents and with probability 1 − p from the pool of newcomers. If the new agent is an
incumbent and there is already another incumbent in the team, the new agent is selected with probability q from the set of
collaborators of a randomly selected incumbent in the team. With probability 1 − q, it is randomly selected from the set of
all incumbents.

For our graphs,we used values of p = 0.6, q = 0.9 (both empirically justified [20]) andm = 4. In order to generate graphs
with exactly N = 1000 agents, we repeated the procedure described before for a numberM of teams equal to ⌊n/m(1− p)⌋
and kept only those graphs with exactly N = 1000 agents.

Once the graphs are constructed, we let the game dynamics develop as previously explained. The results are depicted
in Fig. 6 for the unweighted case, and in Fig. 7 for the weighted graphs both for replicator dynamics and imitate the best
strategy update rules. It appears that the level of cooperation is very similar for weighted and unweighted networks in
both cases, with the only difference that, in the weighted case, the transition region between cooperation and defection
becomes less crisp. This can be due to the fact that weights act as a form of noise in the evaluation of payoffs, which gives
more fluctuations in the transition region. However, the bottom line is that, once more, the effect of the link strength on
cooperation is rather small. One interesting observation is that the amount of cooperation on these graphs, weighted or
unweighted, is high, of the order of what has been found for unweighted BA scale-free networks [4]. The reason is simple:
due to the way in which the graphs are built [20], their degree distribution turns out to be very close to scale-free (results
not shown here). It is thus obvious that the games’ behavior should be very similar. This in turn also shows once again that
the purely topological aspects of the networks are more important than the weights in determining the steady states of the
games.
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Fig. 6. Average cooperation in unweighted assembly model graphs. Left image: imitation of the best. Right image: replicator dynamics. Size of graphs is
N = 1000. Each grid point is the average of 50 independent runs.

Fig. 7. Average cooperation in weighted assembly model graphs. Left image: imitation of the best. Right image: replicator dynamics. Size of graphs is
N = 1000. Each grid point is the average of 50 independent runs.

As a further example of a weighted graph resulting from a bipartite interaction, we consider the network of scientists
belonging to the Econophysics community.2 This network has a sizeN = 738 and 1866 edges, which gives ⟨k⟩ ≃ 5.06. In this
network twonodes (authors) are connected if they have coauthored at least one scientific article. Linkweights are assigned in
twoways; the first corresponds to Eq. (1) inwhich theweight corresponds simply to the number of common papers, suitably
normalized; in the second scheme, this row weight is corrected for a factor that accounts for the number of coauthors of a
given paper, on the grounds that the larger the number of authors a paper has, the lesser the likelihood that the authors know
each other equally well. Thus the weight of the link between two coauthors i and j is given by wij =

∑
k δk

i δ
k
j /(nk − 1) [10],

where δk
j is 1 if author i was a coauthor of paper k and 0 otherwise, and nk is the number of coauthors of paper k (single

author papers are excluded).
Fig. 8 shows the results for the two weighting schemes described above for imitation of the best update (left figures) and

local replicator dynamics update (right figures). It is apparent that results are qualitatively very similar. We can compare
these results with those obtained in the unweighted graphs (Fig. 9). The behavior is similar but, on the whole, the degree
of cooperation in the three non-trivial games is slightly lower for the weighted versions of this social network. Although
no general conclusions can be drawn from this single instance, it can be said that, at least in this case, taking into account
the strengths of ties does not help cooperation. Whether or not this is a more general phenomenon in social networks

2 Kindly provided by Zhang Peng, personal communication.
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Fig. 8. Average degree of cooperation at steady state on the collaboration network of econophysicists. Left column: imitate the best. Right column:
replicator dynamics. Top row: standard weighting scheme; bottom row: corrected weighting scheme (see text). Averages over 50 independent runs.

Fig. 9. Average degree of cooperation at steady state on the unweighted collaboration network of econophysicists. Left column: imitate the best. Right
column: replicator dynamics. Averages over 50 independent runs.

would require a much more complete investigation using real networks coming from different types of social interactions.
Unfortunately, reliable weighted network data are still few.
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Table 2
Average cooperation at steady state in weighted and unweighted networks derived from bipartite
graphs. ‘ib’ and ‘rd’ stand for ‘imitate the best’ and ‘replicator dynamics’ update rules respectively.
PD, SG, and SH design the Prisoners Dilemma, Snowdrift, and Stag Hunt games respectively.

PD, ib PD, rd SG, ib SG, rd SH, ib SH, rd

Guimerà weighted 0.232 0.141 0.883 0.797 0.815 0.668
Guimerà unweighted 0.246 0.137 0.895 0.811 0.807 0.650
Econophysicists, standard weights 0.164 0.147 0.845 0.746 0.673 0.585
Econophysicists, corrected weights 0.203 0.171 0.828 0.754 0.701 0.582
Econophysicists, unweighted 0.221 0.157 0.933 0.875 0.704 0.611

Table 2 summarizes the average cooperation levels reached in the various network types studied in this section, both
weighted and unweighted, for the three non-trivial games PD, SG, and SH.

4. Discussion and conclusions

The focus of this paper is on the influence of the weighted nature of social interaction networks on evolutionary games
played on those networks, an issue that has been somewhat neglected until now. The first major question was: how do
weighted edges affect the results of standard evolutionary games on complex networks? Owing to the lack of generally
accepted theoretical models of the formation and structure of weighted social networks, we tried to answer the question
by using numerical simulation and several methods for assigning weights to links. Three different roads were tried: in the
first, weights were assigned to edges according to some probability distribution independently of the underlying network
topology. This means that the intensity of a binary relationship does not depend on the environment of the corresponding
link and goes under the name of dyadic hypothesis in social networks. In the second empirical model, the weight of a link is
correlated in some way with the degrees of the end points. Finally, in the third model, we started from bipartite affiliation
graphs and generated weighted graphs using the model proposed in Ref. [20] and a real collaboration graph.

The results obtained using the first uncorrelatedmodel clearly show that the influence of weights on the games is almost
negligible. Furthermore, in this case topology and weights do not interact, as shown by the results on scale-free networks.
Even in the case where the network is topologically inhomogeneous, and the weights are distributed according to a power-
law, there is little difference with the unweighted case.

However, available empirical data on large networks suggest that topology and degree can be correlated to some extent.
Assuming the link/weight correlation found in Ref. [19] for flights between airports and used in Ref. [6] for the evolutionary
PD on BA scale-free networks, which postulates that weightswij are proportional to (kikj)α , we have numerically studied the
full phase space of the standard games for several positive andnegative exponentα values thus extending thework of Ref. [6]
which was limited to a very small region of the game configuration space. For values of α larger than 0 and smaller than 1.5
approximately, there is indeed a non-negligible increase of the average cooperation for all the non-trivial games. However,
it must be said that recent empirical research on typical social networks does not support such a weight dependence
[19,8,9].

The thirdmodel comes from the realization thatmany social networks are of the affiliation type,which canbe represented
by bipartite graphs. We have thus studied model weighted networks built according to the method of Ref. [20]. On these
graphs, the average results in terms of cooperation are very good but this appears to be due to the scale-free nature of
the resulting networks and not to the weighted aspects, since weighted and unweighted networks give almost the same
results. Finally, we examined the case of an actual coauthorship network, a projection of the bipartite graph formed by
authors on the one hand, and the papers they have written together on the other. Our results show that weights are even
slightly detrimental for cooperation for this particular network, although the main features remain similar with respect to
the unweighted case. This last investigation was performed to illustrate the study with a real-life case but the results cannot
be generalized in the absence of a sufficient amount of statistics on several social networks. In this respect, we mention
that in previous work, Voelkl and Kasper studied the donor game, an analogous of the PD, using a number of networks
representing weighted interactions in primate groups [7]. Using a fitness proportional update rule, they found that the
fixation probability of cooperation in the groups was larger on the average with respect to a baseline well mixed population
of the same size. The networks were very small and degree-inhomogeneous in many cases. Indeed, the authors refrained
from attributing the results to the weighted nature of their networks; instead, they mainly invoked topological reasons and
concluded that those, rather than the weights, were the more important contribution to network reciprocity. Although they
did not examine the unweighted networks, in the light of the results presented here, it is likely that their explanation is
essentially correct for this particular case.

Summing up all the previous considerations, a general conclusion can be drawn, taking into account the fact that our
numerical simulation study cannot be considered exhaustive, but it has certainly been extensive. The conclusion is that, for
well known model network classes, the weighted aspect of links does not seem to have a large influence on evolutionary
games played on networks, the topological aspects being more important. It appears that weights essentially act as a source
of noise on the payoff values. Thus, studying the unweighted versions of networks would seem to suffice for evolutionary
games, at least in the case of standardmodel graphs. Of course, our conclusion does not apply to other domains. For example,
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link weights certainly play a very important role in diffusion and fragmentation processes on networks. Nevertheless, a
thorough study of evolutionary games on reliably weighted actual social networks is still lacking. The single actual network
that was studied here and the report [7] are insufficient, in our opinion, to draw any reliable conclusions. Our future work
will be directed towards a better understanding of evolutionary games on real weighted networks, including dynamical
ones, and the relationships with their topological features.

Acknowledgments

Enea Pestelacci andMarco Tomassini gratefully acknowledge the Swiss National Science Foundation for financial support
under grant number 200020-119719.

References

[1] J.W. Weibull, Evolutionary Game Theory, MIT Press, Boston, MA, 1995.
[2] M.E.J. Newman, Networks: An Introduction, Oxford University Press, Oxford, UK, 2010.
[3] G. Szabó, G. Fáth, Evolutionary games on graphs, Phys. Rep. 446 (2007) 97–216.
[4] C.P. Roca, J.A. Cuesta, A. Sánchez, Evolutionary game theory: Temporal and spatial effects beyond replicator dynamics, Phys. Life Rev. 6 (2009) 208–249.
[5] M. Perc, A. Szolnoki, Coevolutionary games – A mini review, Biosystems 99 (2010) 109–125.
[6] W. Du, H.R. Zheng, M. Hu, Evolutionary prisoner’s dilemma on weighted scale-free networks, Physica A 387 (2008) 3796–3800.
[7] B. Voelkl, C. Kasper, Social structure of primate interaction networks facilitates the emergence of cooperation, Biol. Lett. 5 (2009) 462–464.
[8] J.-P. Onnela, J. Saramäki, J. Hyvönen, G. Szabó, M.A. de Menezes, K. Kaski, A.-L. Barabási, J. Kertész, Analysis of a large-scale weighted network of

one-to-one human communication, New J. Phys. 9 (2007) 179.
[9] J.-P. Onnela, J. Saramäki, J. Hyvönen, G. Szabó, D. Lazer, K. Kaski, J. Kertész, A.-L. Barabási, The architecture of weighted complex networks, Proc. Natl.

Acad. Sci. 101 (11) (2004) 3747–3752.
[10] M.E.J. Newman, Scientific collaboration networks. II. shortest paths, weighted networks, and centrality, Phys. Rev. E 64 (2001) 016132.
[11] D.P. Croft, R. James, J. Krause, Exploring Animal Social Networks, Princeton, NJ, 2008.
[12] M.G. Zimmermann, V.M. Eguíluz, Cooperation, social networks, and the emergence of leadership in a prisoner’s dilemma with adaptive local

interactions, Phys. Rev. E 72 (2005) 056118.
[13] F.C. Santos, J.M. Pacheco, T. Lenaerts, Cooperation prevails when individuals adjust their social ties, PLoS Comp. Biol. 2 (2006) 1284–1291.
[14] E. Pestelacci,M. Tomassini, L. Luthi, Evolution of cooperation and coordination in a dynamically networked society, J. Biol. Theory 3 (2) (2008) 139–153.
[15] F. Vega-Redondo, Economics and the Theory of Games, Cambridge University Press, Cambridge, UK, 2003.
[16] M. Barthélemy, A. Barrat, R. Pastor-Satorras, A. Vespignani, Characterization and modeling of weighted networks, Physica A 346 (2005) 34–43.
[17] C. Hauert, M. Doebeli, Spatial structure often inhibits the evolution of cooperation in the snowdrift game, Nature 428 (2004) 643–646.
[18] B.A. Huberman, N.S. Glance, Evolutionary games and computer simulations, Proc. Natl. Acad. Sci. 90 (1993) 7716–7718.
[19] A. Barrat, M. Barthélemy, R. Pastor-Satorras, A. Vespignani, The architecture of weighted complex networks, Proc. Natl. Acad. Sci. 101 (11) (2004)

3747–3752.
[20] R. Guimerà, B. Uzzi, J. Spiro, L.A.N. Amaral, Team assembly mechanisms determine collaboration network structure and team performance, Science

308 (5722) (2005) 697–702.


	The influence of tie strength on evolutionary games on networks: An empirical investigation
	Introduction
	Evolutionary games on networks
	The standard games
	Population structure and dynamics
	Simulation parameters

	Games on weighted networks
	Weighted networks from bipartite graphs

	Discussion and conclusions
	Acknowledgments
	References


